The 2nd IEEE Workshop on Security and Privacy in the Cloud (SPC 2016)

TwinCloud: Secure Cloud Sharing Without Explicit Key Management

Kemal Bicakci*, Davut Deniz YavuzT, Sezin Gurkan®
Department of Computer Engineering
TOBB University of Economics and Technology
*bicakci@etu.edu.tr; Tst111101036@etu.edu.tr; 51111101054 @etu.edu.tr

Abstract—In this paper, we propose TwinCloud as a client-
side solution providing a secure system to users without
compromising the usability of cloud sharing. TwinCloud brings
a novel solution to the complex key exchange problem and
provides a simple and practical approach to store and share
files by hiding all the cryptographic and Kkey-distribution
operations from users. Serving as a gateway, TwinCloud stores
the encryption keys and encrypted files in separate clouds
which ease the secure sharing without a need for trust to either
of the cloud service providers with the assumption that they
do not collude with each other. TwinCloud is a lightweight
application and available as open-source.

Keywords-cloud security; cloud storage; key management

I. INTRODUCTION

Cloud storage is a storage model in which the data
is stored in multiple remote servers and locations owned
by a hosting company like Dropbox or Google. These
cloud providers must keep the data accessible as well as
confidential from other users. They offer services like easy
file storage, sharing, syncing and collaboration among cloud
users. Because of these useful services, today, both regular
consumers and business organizations are widely using the
cloud storage. However, while cloud storage services provide
these services, more and more personal and confidential data
is being exposed to privacy and security risks.

Cloud providers have developed new security methods to
protect users data from attackers. For example, Dropbox and
iCloud started to use two-step verification where the idea is
to combine something you know (password) with something
you have (phone) to add an extra layer of security [1], and
also Dropbox uses Secure Sockets Layer (SSL)/Transport
Layer Security (TLS) to protect data in transit between
client apps and Dropbox servers [2]. Moreover, Google
Drive stores the data randomly distributed across multiple
machines which provide another layer of security [3].

However, these security mechanisms are not sufficient
and only protect users from third party unauthorized access,
not from the cloud storage providers access to confidential
files. Google states in its Terms of Service that when you
upload or submit a file, you give Google a license to use,
modify, publish and distribute the content of the file [4].
Furthermore, Google analyzes the file content and uses for
advertising. Dropbox has also a similar term of service for
the files that you put in their storage. Moreover, according to

Snowden’s documents [5], NSA has a secret program called
Prism which the agency collects sensitive data from Google,
Facebook, Apple, Yahoo and other US Internet giants.

In order to protect the customers data stored in the cloud,
two models are used among cloud service providers and
third party cloud applications:

Server-side encryption protects the data from attackers,
but cloud providers have the encryption key and the files
get decrypted on their servers every time they are accessed.
Moreover, their administrators can see users files, and so
can anyone who manages to gain access to their systems.
For instance, in 2010, a Google employee accessed several
Gmail and Hangouts accounts to spy and harass people
[6]. Thus, server-side encryption is not sufficient itself for
security and need to be supported by other security measures
like client side encryption.

Client-side encryption eliminates the above problem since
files are encrypted before uploading to remote cloud servers
with an encryption key that only a specific user knows. There
are several commercial cloud encryption programs such as
nCrypted, Sookasa, Tresorit and BoxCryptor which provide
client-side encryption. However, this method reduces the
usability of cloud services. With client-side encryption, users
could not share their files as easily as before because they
also need to share the encryption key with other users from
a secure channel. In order to solve the key distribution
problem, several PKI-based methods were proposed [7],
[8], [9], [10]. However, PKI-based solutions have some
drawbacks. They are costly because they need to get a
certificate from a CA. On the overall, it is well-documented
that managing cryptographic keys is not manageable for
average computer users [11].

To share files, either encrypted or not, there are several
methods used by cloud providers. File owners can use one
of the following sharing methods to share their files with
business partners, friends and coworkers [12]:

1) Public sharing: File is shared with a public URL that

everyone can access.

2) Secret-URL sharing: File is shared by sending a pri-
vate sharing URL to specific users.

3) Private sharing: File owner must specify who can
access the shared file and cloud service provider
authenticates the specified users while accessing the
file.

AuthoriZ2d8ictr00 Qs30n5ted 16/3BAEIND283$6 IBEENBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:10:47 UTC from IEEE Xplore. Restrictions apply.

The 2nd IEEE Workshop on Security and Privacy in the Cloud (SPC 2016)

Both Dropbox and Google Drive supports all of these
sharing methods (however as of this writing private and
public sharing is only applicable for folders, not for files
on Dropbox).

The sharing methods listed above are used only for
sharing the original file and are not yet used for key sharing.
Thus, after encryption, using cloud providers services, it is
only possible to share the encrypted file. Encryption key
needs to be shared from another channel. Finding a secure
channel to share the key is a problem with serious usability
challenges.

In this paper, we present a novel solution, TwinCloud,
that uses client-side encryption and private sharing method.
Cloud users could continue to use the cloud services as
before in a simple way. Users are able to share their files
securely using the TwinCloud application which maintains
the encrypted file and the encryption key in separate clouds
where users can do all file operations from this single
application without a need for explicit key management.

TwinCloud generates a key and encrypts the file with
this key before storing in cloud servers. Then, it uploads
the encryption key to a cloud and encrypted file to another
cloud. Users easily share a file to a specific user by using the
TwinCloud’s user interface while TwinCloud, in the back-
end, shares the encryption key and the encrypted file to the
specific user using cloud providers’ file sharing features.

The rest of this paper is organized as follows: Section II
discusses the related work. Section III describes our solution
and the properties of TwinCloud. Section IV provides a
comparison of our solution to other solutions and discusses
several extensions and provides ideas for future work. And
finally, Section V concludes the paper.

II. RELATED WORK

This section examines preceding industrial and academic
work related to secure file sharing on clouds.

Boxcryptor [9] is a widely used commercial tool to
protect files in the cloud and it supports many cloud ser-
vice providers such as Dropbox, Google Drive, Microsoft
OneDrive and Box. It uses AES with a key length of 256
bits, CBC (Cipher Block Chaining), PKCS7 padding and
RSA with a key length of 4096 bits and OAEP padding.
Boxcryptor uses a trusted CA and the following steps to
share file between Alice and Bob [13]:

1) Alice requests Bob’s public key from the Boxcryptor

Key Server.

2) Alice encrypts the file key with Bob’s public key.

3) Alice writes the new encrypted key file.

4) The cloud storage provider syncs the modified en-

crypted key file.

5) Bob uses his private key to decrypt the file key.

6) Bob uses the file key to decrypt the file.

Tresorit [10] is a cloud provider that uses client-side
encryption. They use PKI and PKC to share the encryption

key. Tresorit does not need a trust to any other certificate
issuer, certificates are issued by Tresorit company itself
as the Tresorit User CA certificate. Users can share files
by creating Tresor (a shareable secure online folder) that
contains the files they want to share or by creating and
sending encrypted links to other users.

There are sharing methods proposed in the academic
literature which have used client-side encryption and nearly
all of these methods [7], [14], [15] use PKC or PKI-based
solutions. However, there are some disadvantages of these
solutions in terms of usability and security. Managing a
trusted PKI is costly and hard to maintain. It also burdens
the users with handling cryptographic operations. Moreover,
if an attacker manages to obtain the private key of a CA
certificate, the attacker can see all the files and its contents.
In above cases, the attacker could potentially be someone
from the cloud service providers. When the certificates were
issued by cloud providers, this means that they also can
view user data whenever the keys are used for encryp-
tion/decryption purposes [16].

By realizing this, we design TwinCloud that does not
require a trusted third party like a CA and does not use a PKI
structure or PKC. It uses only symmetric key cryptography.
It also does not require users to handle key management.

III. SOLUTION
A. Solution in a Nutshell

TwinCloud is a lightweight application that uses client-
side encryption and private sharing.

Our solution requires at least two cloud service providers.
These cloud providers must provide simple file operations
such as uploading, downloading a file and private file
sharing. We use one of the cloud service providers in
order to store the encrypted file and the other one to store
the encryption key. This ensures that both cloud providers
cannot see the file content by themselves. We assume that
two cloud providers do not collude to bring encrypted file
and the key together to decrypt the file. Against such a
threat, the solution could be extended to using more than
two clouds. Alternatively, encryption keys could be stored in
a private, internal cloud. Companies can use their enterprise
clouds (which does not need to have a high storage capacity)
to store keys and a cloud service provider to store encrypted
files.

For file sharing, the application shares the encrypted file
and the encryption key to the specified user simply by
using cloud provider’s file sharing features. With this way,
only the specific user can access the encrypted file and the
encryption key, and can use them to decrypt the shared file.
The solution does not require a complex PKC based key
exchange protocol.

Authentication of users is managed by cloud service
providers which eliminate the need for a PKI structure or
an additional server to store user information. However, a

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:10:47 UTC from IEEE Xplore. Restrictions apply.

The 2nd IEEE Workshop on Security and Privacy in the Cloud (SPC 2016)

ﬂ
D

TwinCloud

Encrypted
Fie

Figure 1. Uploading a file to cloud using TwinCloud.

custom designed authentication method of TwinCloud can
be applied.

Our solution does not store user accounts and related key
paths to encrypted files on the client side. User accounts are
managed by cloud service providers. Key files and encrypted
files are uploaded with names that can be matched in order
to reach them easily after uploading.

TwinCloud uses symmetric key cryptography for file en-
cryption. The encrypted files are stored in the cloud storage.
It deletes the key files and the encrypted files from the
local computers temporary folder after uploading and down-
loading operations are completed. The basic explanation of
uploading a file is illustrated in Fig. 1.

In summary, TwinCloud provides a single user account
and a uniform user experience to execute all file operations.
In the backend, the application manages two different ac-
counts from two separate cloud service providers. While
users are uploading their files through the application, files
are not stored by our application, rather stored in external
cloud drives.

B. Solution Details

In our solution, we choose two cloud service provider;
Dropbox and Google Drive as they are preferred the most
among cloud users. Moreover, their application program in-
terfaces (APIs) are easy to understand and highly functional.

TwinCloud uses Google Drive to store the encrypted file
and Dropbox to store the encryption key. We use Java
programming language for implementation. Dropbox API
and Google Drive API are used for cloud file operations.

Our application uses 256 bit AES with CBC and PKCS7
padding. Encryption keys are randomly generated by Java
Key Generator utility. For authentication and authorization,
we use OAuth2.0 [17] protocol. Sign up and login operations
to Google Drive and Dropbox are also controlled by the
application.

There are seven main operations implemented in our
application; sign up, login (authentication), upload a file,
download a file, delete a file, share a file and unshare a file.

< Dropbox

‘ And
User
Google Drive

(2) Request token

(1) Log In (3) Authentication
) 1 Can 5y
= o (6) Exchange code for token

(4) Grant Access

(5) Authorization code

et (7) Token Response
(8) Use token for API calls

App

Figure 2. Detailed login flow in TwinCloud.

Fig. 2 shows the login flow. First, user logs in to the
TwinCloud by entering his/her username and password (1).
TwinCloud, in the backend, performs the login to Dropbox
and Google Drive by following these steps: TwinCloud
requests an access token from Google Drive and Dropbox
separately (2). Dropbox and Google Drive request an authen-
tication. This authentication is performed by the application
(3) and the program automatically grants the access (4).
Dropbox and Google Drive returns an authorization code
(5) which will be used to get the access token. TwinCloud
uses the authorization code to exchange the access tokens
(6). Finally, Dropbox and Google Drive returns the access
tokens (7). The application saves the access tokens in order
not to repeat these steps in every login. Authentication and
Grant Access operations are implemented using Selenium.

Similar to other cloud applications such as Dropbox and
Google, if a user has already an account on TwinCloud
and opens the program for the first time, the application
automatically starts to download the stored files into the local
computer and decrypts them.

Fig. 3 shows the upload, share and download operations.

After login, Alice uploads a file to the TwinCloud (I). The
application generates a key (II) and encrypts the file (III).
Then, these files are uploaded to Google Drive and Dropbox
using APIs as seen in (IV) and (V). After successfully

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:10:47 UTC from IEEE Xplore. Restrictions apply.

The 2nd IEEE Workshop on Security and Privacy in the Cloud (SPC 2016)

It
2

Encrypted
Fe

L Google Drive
Downloaded Encryption Downloadef Encrypted
y Fije
(w1 | (IX)

TwinCloud
[X)

Figure 3.
TwinCloud.

Visualization of the upload, share and download operations in

9.6 MB of 16 GB used
-+ Upto date.
Open Twin Cloud folder
Share File
~ Enable Auto Sync

Log out and Exit
Exit

Figure 4. TwinCloud start-bar menu.

File Names User Name Full Name Permission
[twincloudtobb 1
twincloudtobb2

Twinl Cloud1 owner
testFile6. tet twindoud2 tobb writer
testFiled.bet

testFile6. et

4 Share File - X

Figure 5. TwinClouds share window.

uploading the file, Alice shares the file with Bob using
Dropbox API (VI) and Google Drive API (VII). This will
allow Bob to see the shared file from its application. Bob
requests to download the file from the application. Our
application downloads the encryption key from Dropbox
(VIII) and encrypted file from Google Drive (IX). After
completing the downloads, the application decrypts the file
(X). From now, Bob can also see the content of the shared
file.

We implemented TwinCloud in Java. Users can operate
TwinCloud from a start-bar menu as shown in Fig. 4 and
share their files from the application as shown in Fig. 5.
TwinCloud is an open source application and can be found
on Github [18].

IV. COMPARISONS, EXTENSIONS AND FUTURE WORKS

Table. I provides a comparison of TwinCloud and other
solutions.

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:10:47 UTC from IEEE Xplore. Restrictions apply.

The 2nd IEEE Workshop on Security and Privacy in the Cloud (SPC 2016)

TwinCloud PKI-Based Traditional Client-Side Encryption Server-Side Encryption
Requires a trust to the cloud service provider X X X v
Requires a trusted 3rd party X v X X
Public key cryptography X v X X
Symmetric key cryptography v X X v
Easy key management and key exchange v X X X
Private sharing v v X v
Secret-URL sharing v v X v
Integrity check v v X v
Table 1

COMPARISON OF TWINCLOUD TO OTHER SOLUTIONS.

To hide the real file names from cloud providers, we
encrypt the file names while uploading to Google Drive and
Dropbox. To do this, TwinCloud generates two encryption
keys. We store the first one in Google Drive and use to
encrypt the file names on Dropbox. The second key is stored
in Dropbox and used to encrypt the file names on Google
Drive. Moreover, to protect the integrity of a file, TwinCloud
computes a Message Authentication Code (MAC) of the
original file and uploads the result to Dropbox. The key
used to calculate the MAC is stored in Google Drive.

For future work, for information-theoretical level of secu-
rity instead of AES, one-time pads can be used to encrypt
the files. We note that long key sizes are less of a problem
and they can be easily stored in the cloud and shared with
other users using our solution. Furthermore, our solution
can easily be adapted to more than two cloud providers.
For instance, two of the three cloud providers can be used
to store the encryption key and the other one can be used
to store the encrypted file where both keys are needed to
decrypt the file.

V. CONCLUSION

In this paper, we introduced TwinCloud to provide an
easy-to-use and secure user experience for cloud sharing.
We described a novel approach that uses two or more cloud
service providers to securely store and share files without
explicit key management. TwinCloud provides security by
using one cloud provider to store the encrypted file and the
other one to store the encryption key. It executes all the
necessary file operation in the back-end and does not ask
cloud users for complex operations. Since, TwinCloud does
not need to store encryption keys, encrypted files and user
information, it is a lightweight solution. TwinCloud’s us-
ability and perceived security were evaluated and compared
with Tresorit by a usability study which could be found in
a longer version of this paper [19]. TwinCloud is an easily
applicable security solution in scenarios where it is assumed
that cloud providers do not collude with each other.

REFERENCES
[1] C. Louie, Have you enabled two-step verifica-
tion?, Dropbox Blog, October 2014, Available:

https://blogs.dropbox.com/dropbox/2014/10/have-you-enabled-
two-step-verification/ (last access June 21, 2016).
[2] Dropbox, How secure is Dropbox?, Dropbox Help Center, Available:
https://www.dropbox.com/en/help/27 (last access June 21, 2016).
D. Sheng, D. Kondo, and F. Cappello, Characterizing cloud
applications on a Google data center, IEEE 42nd International
Conference on Parallel Processing. Lyon, pp. 468-473, October 2013.

[3]

[4] Google, Google terms of service, April 2014, Available:
https://www.google.com/intl/en/policies/terms/ (last access June
21, 2016).

[5] E. Macaskill, and G. Dance, NSA Files:
Decoded, November 2013, Available:

http://www.theguardian.com/world/interactive/2013/nov/01/snowden-
nsa-files-surveillance-revelations-decoded (last access June 21, 2016).

[6] J. Kincaid, Google confirms that it fired engineer for
breaking internal privacy policies, September 2010, Available:
http://techcrunch.com/2010/09/14/google-engineer-spying-fired/ Chu
(last access June 21, 2016).

E. Duarte, F. Pinheiro, A. Zquete, and H. Gomes, Secure and
trustworthy file sharing over cloud storage using eID tokens, OID
conference, 2014.

X. Chun Yin, Z. Guang Liu, and H. Jae Lee, An Efficient and secured
data storage scheme in cloud computing using ECC-based PKI,
Advanced Communication Technology (ICACT) IEEE, 2014.
Boxcryptor, Available: https://www.boxcryptor.com/en (last access
June 21, 2016).

[10] Tresorit, Available: https://tresorit.com/ (last access June 21, 2016).

[11] Whitten, Alma, and J. Doug Tygar. Why Johnny Can’t Encrypt: A
Usability Evaluation of PGP 5.0. Usenix Security. 1999.

[12] C. Kang Chu, W. Tao Zhu, J. Han, J. Liu, J. Xu, and J. Zhou,
Security concerns in popular cloud storage services, IEEE Pervasive
Computing, October 2014.

[13] Boxcryptor, Technical Overview,
https://www.boxcryptor.com/en/technical-overview
June 21, 2016).

[14] P. Gharjale, and P. Mohod, Efficient public key cryptosystem for
scalable data sharing in cloud storage, Computation of Power, Energy
Information and Communication (ICCPEIC), April 2015.

[15] C. Kang Chu, S. Chow, W. Guey Tzeng, J. Zhou, and R. Deng,
Key-aggregate cryptosystem for scalable data sharing in cloud storage,
IEEE Transactions on Parallel and Distributed Systems Volume 25,
pp. 468-477, April 2013.

[16] D. Wilson, and G. Ateniese, To share or not to share in client-side
encrypted clouds, Information Security Lecture Notes in Computer
Science Volume 8783, 2014, pp. 401-41.

[17] [RFC6749] D. Hardt, "The OAuth 2.0 authorization framework”,
RFC 6749, October 2012.

[18] D. Deniz Yavuz and S. Gurkan, TwinCloud, 2016, GitHub repository,
https://github.com/DenizYavuz/TwinCloud

[19] K. Bicakci, D.D. Yavuz, and S. Gurkan, TwinCloud: A Client-Side
Encryption Solution for Secure Sharing on Clouds Without Explicit
Key Management, arXiv preprint arXiv:1606.04705, 2016.

(7]

(8]

[9]

Available:

(last access

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:10:47 UTC from IEEE Xplore. Restrictions apply.

