
Open-TEE is No Longer Virtual: Towards
Software-only Trusted Execution Environments

Using White-box Cryptography

Kemal Bicakci
TOBB University of Economics and Technology

Ankara, Turkey

bicakci@etu.edu.tr

Ihsan Kagan Ak
TOBB University of Economics and Technology

Ankara, Turkey

ihsankaganak@etu.edu.tr

Betul Askin Ozdemir
Middle East Technical University

Ankara, Turkey

askinbetul@gmail.com

Mesut Gozutok
HAVELSAN Inc.
Ankara, Turkey

mgozutok@havelsan.com.tr

Abstract—Trusted Execution Environments (TEEs) provide
hardware support to isolate the execution of sensitive operations
on mobile phones for improved security. However, they are not
always available to use for application developers. To provide a
consistent user experience to those who have and do not have a
TEE-enabled device, we could get help from Open-TEE, an open-
source GlobalPlatform (GP)-compliant software TEE emulator.
However, Open-TEE does not offer any of the security properties
hardware TEEs have. In this paper, we propose WhiteBox-
TEE which integrates white-box cryptography with Open-TEE
to provide better security while still remaining complaint with
GP TEE specifications. We discuss the architecture, provisioning
mechanism, implementation highlights, security properties and
performance issues of WhiteBox-TEE and propose possible
revisions to TEE specifications to have better use of white-box
cryptography in software-only TEEs.

Index Terms—Trusted execution environment, White-box cryp-
tography, Open-TEE, Secure storage, SPACE algorithm.

I. INTRODUCTION

Trusted Execution Environments (TEE) bring hardware

support against threats to mobile devices by providing an

execution environment isolated from the main operation. They

are programmable thus have the potential to protect sensitive

mobile applications and services. However, two major barriers

prevent unleashing their full potential:

• Device manufacturers limit their use for their purposes.

Therefore, most of the time it is not available to applica-

tion developers although it is physically present.

• Even when they are available to use, it is not straight-

forward to develop such an application (cited difficulties

include expensive and/or proprietary development tools,

expensive tools or primitive techniques for debugging,

etc. [1]).

This work is supported by TUBITAK (The Scientific and Technological
Research Council of Turkey), Grant no: 5170076.

To overcome the second barrier, McGillion et al. presented

Open-TEE, a virtual TEE implementation (software based

emulator) conforming GlobalPlatform (GP) specification [1].

Using Open-TEE, the developers could easily develop GP-

complaint TEE applications so-called trusted applications (TA)

using only the tools they already have and are familiar with.

Once the TA is ready, since it is GP-complaint, it can easily be

deployed to TEE-enabled devices conforming GP standards.

Through a user-study, the authors also showed that the per-

ceived usability of Open-TEE is high among TA developers.

On the other hand, the first barrier remains. In fact, this

barrier is so real that after discussions with service providers,

Open-TEE developers found out that Open-TEE could be used

not only for development but also put in use as a fallback

mechanism after deployment i.e., the application will choose

to use Open-TEE if useful TEE hardware is not detected.

By this way, the service providers could present a consistent

user experience both for TEE-enabled devices as well as for

devices without an accessible TEE. However, as noted by the

authors, Open-TEE is just an emulator, it executes on the

main operating environment and does not offer any security

property. The improvement of the aforementioned operation

mode with respect to security remains an open problem.

In this paper, we present a solution called WhiteBox-TEE
to fulfill this need for security. Our solution relies on white-box

cryptography which aims at providing security in a white-box

setting as opposed to against a black-box threat model i.e., the

attacker could have a reach to the environment the encryption

is performed. We describe our approach to integrate white-box

cryptography with Open-TEE to protect cryptographic keys in

rest (but not during usage) while still remaining complaint

with the GP specification. We also discuss possible extensions

to this specification to make it possible to use white-box

cryptography against more powerful adversaries. We argue that

WhiteBox-TEE could be a promising solution for those who

177

2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA)

978-1-7281-6741-1/19/$31.00 ©2019 IEEE
DOI 10.1109/TPS-ISA48467.2019.00029

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:09:53 UTC from IEEE Xplore. Restrictions apply.

would like to deploy applications simultaneously to mobile

devices which have and which do not have accessible hardware

TEE.

The rest of our paper is organized as follows. Section II

provides background information. Section III presents our

solution; WhiteBox-TEE. Section IV presents an overview

for a possible revision to GP specifications enabling the use

of white-box cryptography for better protection. Section V

discusses our proposals further with promising directions for

future work. Finally, Section VI concludes.

II. BACKGROUND

In the following subsections, we provide short background

information on Trusted Execution Environments (TEEs), TEE

Provisioning, Global Platform Specifications related to TEEs,

Open-TEE, and White-box Cryptography, respectively.

A. Trusted Execution Environments

Complexity and size are the worst enemies of security.

Mobile operating systems such as Android are so large and

complex that it is difficult if not impossible to secure them.

A more plausible solution is having a secondary execution

environment besides the more traditional one isolated using

specialized hardware features. This solution called TEE has

been available for more than 10 years in mobile devices [2].

TEE has a smaller Trusted Computing Base thus a lim-

ited set of functionality. But the functionality it provides

is sufficient to serve Trusted Applications (TAs) which are

applications running on top of TEE and provides security-

critical operations. On top of a Rich Execution Environment

(REE) such as Android, there is a client application (CA)

which is similar to other Android applications but can invoke

TAs whenever a security-related operation is needed e.g., for

encrypting a message.

B. TEE Provisioning

The ecosystem of a TEE and lifecycle of TAs needs to be

carefully managed to satisfy the security requirements. One

of the requirements is that only authorized service providers

should install, update and remove a TA. Otherwise, an attacker

installing a malicious TA could easily compromise the security

of the system. A recent Internet Draft presents a Trusted

Execution Environment Provisioning (TEEP) architecture for

this purpose [3]. The exact details of this architecture are

not relevant thus not discussed here but two of the main

components in the system are discussed in short because we

will also propose to use them for provisioning of WhiteBox-

TEE:

• TAM (Trusted Application Manager): It is usually imple-

mented as a remote entity to perform the lifetime man-

agement activities on TAs on behalf of service providers.

• TEEP Broker: TEE and TAs usually do not have the

capability to directly communicate with the TAM. The

TEEP Broker is an REE application that enables this

communication. CAs might carry the TEEP Broker func-

tionality.

C. GlobalPlatform Specifications

GlobalPlatform is a non-profit consortium undertaking the

initiative to standardize TEEs. Specifications are available

cost-free from their web site. TEE Core API and TEE Client

API [4] specifications are most related to our work since they

are the primary interfaces for TEE applications.

TEE Core API is used to implement a TA and TEE Client

API is used to invoke the corresponding TA by the CA. There

are both open-source (e.g., OP-TEE [5]) and proprietary (e.g.,

Trustonic [6]) implementations of these APIs. However, once

TAs and CAs are implemented using these APIs, they can eas-

ily be ported to a chosen GP-complaint TEE implementation

(More information on TEE Core API is provided in Section

III).

D. Open-TEE

Open-TEE is a virtual TEE (software emulator) conforming

to GlobalPlatform specification [1]. It is hardware independent

i.e., it does not emulate specific hardware, therefore, TAs

developed with Open-TEE can be compiled to any TEE. Two

of its libraries, which are of most interest to developers, are

libInternalApi.so and libTEE.so. TAs are linked against the

former and CAs are linked against the later library.

A user study to determine whether Open-TEE eases the

burden of TA development was conducted with 14 partici-

pants [1]. The results suggest that the perceived usability of

Open-TEE is higher than that of the current tools used by the

experienced TA developers.

In this user study, a discussion with service providers reveals

an interesting finding and is in fact the starting point for our

work. Open-TEE is intended to be a developer tool but an

alternative use is to ship CA and TA with Open-TEE and

arrange to use it whenever a real hardware TEE is not detected.

The authors noted that the question of how best to isolate it

from the REE in the absence of any hardware support was

their ongoing work [1]. But up to our best knowledge, no work

has been published so far regarding improving the security of

Open-TEE in this new usage scenario.

E. White-box Cryptography

In a black-box threat model, a usually-made assumption in

cryptography, the attacker has access only to the input and

output of cryptographic algorithms. Security practitioners are

questioning how realistic this model is when the algorithms

are deployed in applications executing on open devices like

mobile phones without secure elements. In such a context,

a so-called “white-box attacker” may have full access to the

software implementation of cryptographic algorithms.

White-box cryptography aims to ensure the security of

cryptographic algorithms against a white-box attacker. Code

obfuscation is a related and complementary technique for

protecting software implementations. The difference is that

code obfuscation is aimed at protecting against the reverse

engineering of a cryptographic algorithm in more general

terms while the main motivation of white-box cryptography

is the protection against key extraction.

178

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:09:53 UTC from IEEE Xplore. Restrictions apply.

The work by Chow et al. in 2002 is the first academic

study of white-box cryptography [7], [8]. The main idea is

to come up with a key-instantiated version of a cryptographic

algorithm so that the key is hidden. In other words, for each

secret key, a look-up table is implemented so that the key input

is unnecessary after the setup [9].

All current white-box approaches of standardized crypto-

graphic primitives such as AES and DES have been pub-

licly broken [10]. To add further protection, external (key-

independent) encodings may be used but when these encodings

are applied to standard AES and DES, then the result is not

standard-compliant. If standard compliance and interoperabil-

ity is not a goal, another option is to design a dedicated white-

box algorithm. One of these algorithms is SPACE proposed by

Bogdanov and Isobe [10]. Up to our best knowledge, so far

no successful cryptanalysis work is reported against SPACE.

Another contribution of the work by Bogdanov and Isobe

is introducing the notion of space-hardness to quantitatively

evaluate the difficulty of code lifting attacks [10]. Code lifting

is one of the major practical issues regarding security of

white-box implementations. It means without extracting the

cryptographic keys, the entire implementation (code) is used as

one big key. Code lifting attacks could be made more difficult

by an incompressible large implementation hopefully beyond

an attackers processing capacity to copy and distribute. Device

binding countermeasures could also be used to avoid code

lifting.

III. OUR SOLUTION: WHITEBOX-TEE

In this section, we present WhiteBox-TEE. We begin with

the adopted attacker model. We explain the provisioning and

usage of WhiteBox-TEE bundled with a CA and TA. Then,

we give the details of our implementation of a white-box

cryptography library and the changes we made to the Open-

TEE to make use of white-box cryptography that leads to

our proposed WhiteBox-TEE solution. Finally, we provide

performance evaluation results of WhiteBox-TEE.

A. Attacker Model

A typical hardware TEE provides many security capabilities

(e.g., secure boot) against a powerful and sophisticated threat

model. We believe supporting the same set of capabilities in

a software-only solution while keep being conformant to GP

specification is not a realistic goal. We need to adopt a weaker

but still relevant model.

We consider a threat model which involves a malicious

party or application attempting to access the sensitive data and

cryptographic keys on permanent storage. Although unautho-

rized access to cryptographic keys, while they are in memory,

is also a threat white-box cryptography could address, we

do not include it in our attacker model because it requires

us to support the white-box encryption algorithms in TEE

Core API. Since TEE Core API is built around only the

standard encryption algorithms (which do not have unbroken

white-box implementations), this contradicts with our target of

conformance to GP specification. We choose not to do so and

protect cryptographic keys only in rest (while in permanent

storage). In other words, secure storage for the cryptographic

keys is the main target. We will discuss how we could protect

keys while in use with possible extensions to GP specifications

in section IV.

We also assume the attacker could not capture user input

while entering sensitive information like PIN. Hardware at-

tacks are also out of scope in our work. We also do not address

attacks other than integrity and/or confidentiality e.g., denial

of service via erasing the disk. The last but not the least, we

assume the code running on the mobile device is protected

against reverse engineering through code obfuscation and other

software protection techniques.

In our attacker model (tailored from [11] to suit our needs),

we want to make sure that stored sensitive data and crypto-

graphic keys can only be accessed by authorized applications.

The attacker has the following two alternative options for

unauthorized access:

• Malicious app attacker: The attacker installs a malicious

application and tries to access stored data and keys using

its permissions.

• Root attacker: The attacker has root credentials and could

run applications with root permissions.

Open-TEE, used as a fallback mechanism, could be assigned

the same logical user ID as CA and TA. Then, the best

practice is to store the keys in a directory that cannot be

accessed by other applications [11]. Hence, we could say that

a malicious app attacker could already be avoided. However,

with root permissions, all data directories can be accessed.

Root attacker is a serious threat against Open-TEE but not

against WhiteBox-TEE as we will see.

B. Provisioning and Usage

We envision an enterprise messaging application to motivate

the provisioning process. We suppose that due to security

concerns, an enterprise asks its employees to use a TEE-

supported in-house system instead of popular free applications

like Whatsapp. But they adopt a BYOD (Bring Your Own

Device) policy for economical reasons. Some of the employees

have a TEE-accessible mobile phone while some others do not.

Then, the later employees should follow the following steps

before using the WhiteBox-TEE integrated mobile application:

1) He (or she) applies to the Company to be authorized to

use the app. Once authorized, he obtains a PUK (Personal

Unlocking Key)1. This could be done offline in person for

improved security.

2) He downloads and installs the TEEP application from the

app store (or from a local server).

3) Once he opens the app for the first time, TEEP checks

whether a hardware TEE is available or not (in our case

it is not detected).

4) The app opens a secure connection through TLS with

the TAM. It informs hardware TEE is not detected

1We overload the term PUK, which has more digits than a PIN and used
not only for unblocking but also to initialize.

179

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:09:53 UTC from IEEE Xplore. Restrictions apply.

(optionally, it sends the unique device ID which will be

used by the TAM to bind the bundle to be downloaded to

the device so that the bundle will not work on any other

device, further details are not discussed here).

5) He authenticates himself with the PUK.

6) Upon successful entry of the PUK, the bundle (CA, TA,

and WhiteBox-TEE) is downloaded from the TAM server.

7) Before the installation takes place, the following steps are

carried out:

(a) The user is asked to choose a PIN (shorter than PUK).

(b) The white-box encryption algorithm is initialized i.e.,

the lookup tables of white-box algorithm (WB-Tables)

are constructed after generating a key using PUK as a

seed to a PRF [12]2).

8) CA, TA, WhiteBox-TEE, and WB-Tables are installed

(stored in local storage) to the mobile phone.

9) The PUK is erased securely.

10) The PIN is encrypted (with the white-box algorithm) and

stored.

Fig. 1. Provisioning of WhiteBox-TEE integrated mobile applications.

After the successful provisioning, the WhiteBox-TEE inte-

grated mobile application is used as follows:

1) The user opens the application.

2) He enters the PIN.

3) The PIN encrypted with the white-box algorithm is

decrypted and is matched with the user-entered PIN.

4) If the PIN is correct, the execution continues. Otherwise,

the PIN is re-asked for a limited number of times (e.g.,

two more times). If it is false in all trials, the application

closes.

5) TA and CA are executed. During the execution of TA,

whenever an encryption key is created or opened, it is

carried out after encryption or decryption with white-box

library. Any cryptographic key is never stored in plaintext.

In the following subsection, the last item is discussed further

with implementation details.

C. Development of a White-Box Cryptography Library and
Changes Made to TEE Core API

We developed a white-box cryptographic library as required

for WhiteBox-TEE. It currently supports only the SPACE

2The reason of using PUK as the seed is not security-related (the key can
be independent of the PUK) but preferred to be able to recover the encrypted
data if the tables are damaged and to ease porting to a new phone when
needed.

algorithm [10]. The library supports three main operations:

1) Table generation: As mentioned, white-box encryption

algorithms including SPACE algorithm do not require

key input after a lookup table is generated from a secret

key. A function which takes SPACE type - the variant of

the specific block cipher in SPACE family of algorithms

(SPACE-8, SPACE-16 or SPACE-24) and secret key as

input and returns a lookup table is implemented:

u i n t 8 t ** g e n e r a t e t a b l e (

u i n t 8 t s p a c e t y p e , u i n t 8 t * key) ;

For table generation, SPACE uses a block cipher, which

could be a standard algorithm in the black-box model.

As recommended by SPACE designers, AES-128 is

preferred in our implementation. The implementation

is speeded up with the AES instruction set (ARM

architecture cryptographic extensions).

2) Encryption: Encryption function implements encryption

of a variable-sized input plaintext message using SPACE

algorithm and counter mode of operation [13]. Other

inputs to the function are a nonce value, length of the

input message, lookup table and SPACE type. The output

is a pointer to the ciphertext.

u i n t 8 t * e n c r y p t i n p u t c t r m o d e (

u i n t 8 t * p l a i n t e x t , u i n t 8 t * nonce ,

u i n t 3 2 t l e n g t h , u i n t 8 t ** t a b l e ,

u i n t 8 t s p a c e t y p e) ;

3) Decryption: Decryption function implements decryption

of a ciphertext message using SPACE algorithm and

counter mode of operation. Similar to encryption func-

tion, other inputs to the function are a nonce value, length

of the input message, lookup table and SPACE type. The

output is a pointer to the plaintext message.

u i n t 8 t * d e c r y p t i n p u t c t r m o d e (

u i n t 8 t * c i p h e r t e x t , u i n t 8 t * nonce ,

u i n t 3 2 t l e n g t h , u i n t 8 t ** t a b l e ,

u i n t 8 t s p a c e t y p e) ;

As mentioned, TEE Core API and TEE Client API speci-

fications are the primary interfaces for a CA and TA, respec-

tively in a TEE application. Since security-sensitive operations

are performed by the TA, we do not need to change libTEE.so
in Open-TEE library and need to analyze TEE Core API to

understand the modifications required for libInternalApi.so so

that the cryptographic keys are securely stored.

TEE Internal Core API provide TAs a set of core services.

These core services can be classified into four broad cate-

gories [4]:

• Trusted Storage API for Data and Keys

• Cryptographic Operations API

• Time API

• TEE Arithmetic API

180

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:09:53 UTC from IEEE Xplore. Restrictions apply.

To integrate the white-box crypto library with TEE Core API

for secure storage, we need to modify the implementation of

only the first of these services; Trusted Storage API.

According to TEE Core API Specification [4], each TA has

access to a set of Trusted Storage Spaces, identified by 32-

bit Storage Identifiers (however, the current version defines a

single such space for each TA). The objects in this storage

space are accessible only to the TA that created them and are

not visible to other TAs, thus a private storage space is defined

for the TA.

Trusted Storage Space contains so-called Persistent Ob-

jects, each of which is identified by an Object Identifier i.e.,

storage blob id. A persistent object can be of three types; a

Cryptographic Key Object, a Cryptographic Key-Pair Object,

or a Data Object. When the TA wants to generate or derive

a persistent key, it has to first use a transient object, then

write the attributes of a transient object into a persistent object.

There are four persistent object functions:

(i) TEE OpenPersistentObject

(ii) TEE CreatePersistentObject

(iii) TEE CloseAndDeletePersistentObject1

(iv) TEE RenamePersistentObject

Besides these functions, there are also functions to access

the data streams of persistent objects. Again, there are four

data stream access functions:

(i) TEE ReadObjectData

(ii) TEE WriteObjectData

(iii) TEE TruncateObjectData

(iv) TEE SeekObjectData

As required to remain conformed to TEE Core API Spec-

ification, we did not change the interface of any of these

functions. However, we made change to lower-level functions

used by these functions. We briefly explain these changes,

below:

In the original version of the TEE ReadObjectData

function, which is usually called after running

TEE OpenPersistentObject, the object is filled by

calling ext read stream(). We modify this function so

that after reading the stream first a check is performed

whether lookup tables are available or not. If available,

decrypt input ctr mode() function from the white-box crypto

library is called to decrypt the stream before it is returned

(note that a lookup table should have already been generated

from a secret key as part of the provisioning process).

In a similar fashion, encrypt input ctr mode() function

from the white-box library is called in the ext write stream()
before writing the stream.

D. Performance of WhiteBox-TEE

Among the three main operations supported by our white-

box crypto library, the most time consuming operation is the

table generation which is fortunately required only for one-

time.

In the implementation of SPACE, any block cipher algo-

rithm can be used for the table generation. As suggested by

its inventors, we instantiate the SPACE family with AES-128

as the underlying block cipher which is accelerated using hard-

ware instructions. Performance evaluation of table generation

for different SPACE variants using Android 8.0 Oreo (Octa-

core Max 2.45 GHz ARMv8-A CPU and 6 GB memory)

mobile phone is given in Table I. We do not find SPACE-32

feasible for our target platforms therefore did not implement it

since table storage requires 51.5 GB of memory which is not

available in today’s most mobile phones. Furthermore, huge

table sizes cause greater performance costs [14].

Space Type Software Im-
plementation

(ms)

Hardware-
accelerated

Implementation
(ms)

Memory
Req. (MB)

SPACE-8 0.26 0.06 0.00375
SPACE-16 70.24 7.19 0.896
SPACE-24 8013.84 407.45 218

TABLE I
PERFORMANCE OF TABLE GENERATION OPERATION FOR DIFFERENT

SPACE VARIANTS.

The timing values for encryption and decryption are also

measured and given in Table II. Due to algorithmic details,

the most efficient SPACE variant is not SPACE-8 but SPACE-

16 with which encryption and decryption could be performed

at a rate of around 5.40 MB/secs.

Space Type SPACE Encryption / Decryption
(MB/secs)

SPACE-8 3.49
SPACE-16 5.40
SPACE-24 0.84

TABLE II
PERFORMANCE OF ENCRYPTION/DECRYPTION OPERATIONS FOR

DIFFERENT SPACE VARIANTS.

IV. RUN-TIME PROTECTION: WHITEBOX-TEE+

In this section, we present WhiteBox-TEE+ to have better

use of white-box cryptography i.e., to provide protection to

cryptographic keys also while in use with a required revision to

TEE specifications. Our suggestion is simple: just add SPACE

(or another chosen white-box algorithm to the list of supported

algorithms) in Cryptographic Operations API (as symmetric

ciphers, currently supported algorithms are DES, Triple-DES

and AES). Since white-box algorithms operate differently than

classical algorithms i.e., use of a table instead of a key for

encryption and decryption, this revision requires more than just

a new entry in the list of supported algorithms. For instance,

TEE CipherInit function specified in the TEE Core API [4],

which starts the symmetric cipher operation, is no longer an

operation that must have been associated with a key. Therefore

this requirement needs an exception. The exact details of all

revisions to the specifications is out of scope in our current

work hence not discussed further.

181

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:09:53 UTC from IEEE Xplore. Restrictions apply.

While it is viable to add a white-box algorithm for sym-

metric encryption, this is not true for asymmetric encryp-

tion, digital signature and key exchange algorithms because

no drop-in replacement for conventional public-key schemes

has been proposed yet [15]. In applications such as secure

messaging, communication security is usually provided using a

hybrid cryptosystem (combination of symmetric and asymmet-

ric techniques). Hence, this deficiency is a serious limitation.

On the other hand, the suggested revision could be sufficient

for storage security and security applications such as digital

rights management.

An important observation we made is that use of white-

box algorithms helps not only in software-only TEEs but in

hardware TEEs as well because tamper-resistance is not a

requirement as per GP TEE specifications [16]. Use of white-

box cryptography providing software tamper resistance may

help hardware based tamper resistance to become less of a

concern for certain applications.

V. DISCUSSION AND FUTURE WORK

Up to now, we consider only one of these two cases:

either a TEE is available or not to execute a TA. However,

in practice there is a gray area in between where a TEE is

present but its use is limited i.e., only for a cryptographic

key service provided by the device manufacturer that could

serve for applications running in REE. The situation is even

more complex due to the fact that the same phone model may

or may not provide this service depending on the version of

Android running on it [11].

A relevant question regarding the TEE-supported key ser-

vice is whether WhiteBox-TEE is still needed or not if such

a service is available to use. Cooijmans et al. analyzed the

security of such a scenario and concluded that by itself it does

not provide security against a root attacker [11]. We remind

that WhiteBox-TEE protects against the root attacker since the

key is securely erased after the lookup table is generated.

To keep things simple, a viable alternative solution against

the root attacker is the encryption of all cryptographic keys

with a master key derived from a user-supplied PIN. As a

result, the only data accessible by the root attacker is encrypted

keys useless without the master key. In fact, the PIN that is

used to authenticate the user could also be used to generate the

master key used to decrypt all keys before they are needed.

We argue that WhiteBox-TEE has still advantage over this

solution because a typical 4-6 digits PIN is vulnerable against

a brute-force off-line attack3 even though the attack could be

made more time-consuming by memory-hard functions [17].

We note that a longer PUK used in our solution, only entered

once (and possibly protected by a memory-hard function on

the TAM server), would not have such a vulnerability.

The comparison with respect to security and compliance

properties of all the solutions discussed so far is presented in

Table III. Advanced security features mentioned in the table

3This attack involves obtaining a ciphertext and trying all possible
combinations of PINs to see which master key derived from the PIN is
successful for successful decryption.

Solution Protection
against

root
attacker

Brute-
force
attack
resis-
tance

Run-
time

protec-
tion

Advanced
security
features

GP
Compli-

ance

TEE-
supported

key
service

- + - - NA

Encryption
with
PIN-

derived
key

+ - - - NA

TA on
Whitebox-

TEE

+ + - - +

TA on
WhiteBox-

TEE+

+ + + - -

TA on
Hard-
ware
TEE

+ + + + +

TABLE III
COMPARISON OF SOLUTIONS WITH RESPECT TO SECURITY AND

COMPLIANCE PROPERTIES.

include trusted user interface, secure boot and other undis-

cussed properties. NA (Not Applicable) means the solution is

generic and compliance is a non-issue.

As mentioned, code lifting attacks are one of the serious

concerns for white-box crypto implementations. Although, the

attack could be made harder by choosing a SPACE variant

with a large table size, there is still room for more attack

resistance by the use of code obfuscation and device binding

techniques. Doing research on these techniques and choosing

the most appropriate ones for WhiteBox-TEE integration is the

first item in our agenda. Another promising research direction

is to explore other options for white-box algorithm support in

TEE specifications (e.g., use of public-key schemes).

VI. CONCLUSION

The use of mobile phones for security sensitive applications

(e.g., banking, bitcoin wallets, shopping) is on the rise. Mobile

platforms will play a key role in next generation smart and

intelligent systems and applications. However, the environ-

ment of Android, the most widely used mobile operating

system, with its huge kernel size and hosting many potentially-

malicious applications developed by different third parties is

far from satisfying the security requirements for these use-

cases.

Trusted Execution Environments provide hardware-based

isolated execution and can be used to safeguard the infor-

mation processed within it. While it has a huge potential

to mitigate most of the concerned mobile risks, its use by

application developers is not always possible because device

vendors could limit its use solely for their purposes. If this is

the case, Open-TEE, a TEE emulator software, could be used

182

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:09:53 UTC from IEEE Xplore. Restrictions apply.

as a fall-back mechanism. On the other hand, Open-TEE does

not provide any security feature or isolation property.

In this paper, we aimed to answer how best to isolate

Open-TEE from the Android threats in the absence of any

hardware support. In our solution, we get help from white-box

cryptography to design and implement WhiteBox-TEE which

could provide protection against an attacker who has root

credentials and could run applications with root permissions.

Being compliant to GlobalPlatform (GP) specifications, we

believe WhiteBox-TEE is a promising solution for developers

who would like to present a consistent user experience for

their clients who have or have not a TEE-enabled mobile

device. We also present WhiteBox-TEE+ to provide run-time

protection for TA’s cryptographic operations using white-box

cryptography with a revision to GP specifications.

REFERENCES

[1] B. McGillion, T. Dettenborn, T. Nyman, and N. Asokan, “Open-tee:
An open virtual trusted execution environment.” in IEEE Trustcom/Big-
DataSE/ISPA, vol. 01. IEEE, 2015, pp. 400–407.

[2] J.-E. Ekberg, K. Kostiainen, and N. Asokan, “The untapped potential of
trusted execution environments on mobile devices.” in IEEE Security &
Privacy, vol. 12. IEEE, 2014, pp. 29–37.

[3] M. Pei, H. Tschofenig, D. Wheeler, A. Atyeo, and L. Dapeng,
“Trusted execution environment provisioning (teep) architecture.”
2019, last accessed 15 August 2019. [Online]. Available:
http://www.potaroo.net/ietf/ids/draft-ietf-teep-architecture-03.txt

[4] “Globalplatform specifications,” last accessed 15 August 2019. [Online].
Available: https://globalplatform.org/specs-library/?filter-committee=tee

[5] “Open portable trusted execution environment,” last accessed 15 August
2019. [Online]. Available: https://www.op-tee.org/

[6] P. Butterworth, “Devices with trustonic tee.” 2015,
last accessed 15 August 2019. [Online]. Available:
https://www.trustonic.com/news/blog/devices-trustonic-tee/

[7] S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot, “White-box
cryptography and an aes implementation,” in Revised Papers from the
9th Annual International Workshop on Selected Areas in Cryptography,
ser. SAC ’02. Springer-Verlag, 2002, pp. 250–270.

[8] S. Chow, H. Johnson, and P. C. van Oorschot, “A white-box des
implementation for drm applications.” in ACM Workshop on Digital
Rights Management. Springer-Verlag, 2002, pp. 1–15.

[9] M. Joye, “On white-box cryptography.” in Security of Information and
Networks. Trafford Publishing, 2008, pp. 7–12.

[10] A. Bogdanov and T. Isobe, “White-box cryptography revisited: Space-
hard ciphers,” in Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2015, pp. 1058–1069.

[11] T. Cooijmans, J. de Ruiter, and E. Poll, “Analysis of secure key storage
solutions on android,” in Proceedings of the 4th ACM Workshop on
Security and Privacy in Smartphones & Mobile Devices. ACM, 2014,
pp. 11–20.

[12] L. Chen, “Recommendation for key derivation using pseudorandom
functions.” no. 800-108. National Institute of Standards & Technology,
2009.

[13] D. A. McGrew and J. Viega, “The galois / counter mode of operation (
gcm),” in NIST Modes of Operation Process, 2004.

[14] R. Dahab, J. Lpez, C. R. Rodrigues, Flix, H. Fujii, G. Sider, and A. C.
Serpa, “White box implementations of dedicated ciphers on the arm
neon architecture,” in SBSeg 2018. SBC, 2018, pp. 9–16.

[15] A. Biryukov, C. Bouillaguet, and D. Khovratovich, “Cryptographic
schemes based on the asasa structure: Black-box, white-box, and public-
key,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2014, pp. 63–84.

[16] C. Shepherd, G. Arfaoui, I. Gurulian, R. P. Lee, K. Markantonakis,
R. N. Akram, D. Sauveron, and E. Conchon, “Secure and trusted
execution: Past, present, and future-a critical review in the context
of the internet of things and cyber-physical systems,” in 2016 IEEE
Trustcom/BigDataSE/ISPA. IEEE, 2016, pp. 168–177.

[17] D. Boneh, H. Corrigan-Gibbs, and S. Schechter, “Balloon hashing: A
memory-hard function providing provable protection against sequential
attacks,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2016, pp. 220–248.

183

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:09:53 UTC from IEEE Xplore. Restrictions apply.

