
2020 International Conference on Information Security and Cryptology (ISCTURKEY)

Security Analysis of Mobile Authenticator
Applications

Can Ozkan
Department of Computer Engineering

TOBB University of Economics and Technology
Ankara, Turkey

canozkan1994@gmail.com

Kemal Bicakci
Securify Information Tech. and Security Training

Consulting Ltd.
Ankara, Turkey

bicakci@etu.edu.tr

Abstract—Deploying Two-Factor Authentication (2FA) is one
of the highly-recommended security mechanism against account
hijacking attacks. One of the common methods for 2FA is to bring
something you know and something you have factors together. For
the latter we have options including USB sticks, smart cards, SMS
verification, and one-time password values generated by mobile
applications (soft OTP). Due to the cost and convenience reasons,
deploying 2FA via soft OTPs is more common. However, unlike
smart cards which have tamper resistance property, attackers
can access smartphones remotely or physically so that they can
fetch shared secret seed value - an important security risk for
mobile authenticators. For this reason, it is critical to analyze
mobile authenticator applications in this context. In this paper,
we report our findings after analyzing eleven different Android
authenticator applications. We report that we have fetched
cleartext shared secret seed value from storage in five applications
and from memory in seven applications using standard reverse
engineering techniques and open-source tools.

Index Terms—Android, Mobile Security, Reverse Engineering,
Obfuscation, Cryptographic Controls, ProGuard, Android Key
Store, Mobile Authenticator, Authentication, Two Factor Authen-
tication

I. INTRODUCTION

In the 21st century, the technology we use has changed

dramatically. Online services have gained tremendous popu-

larity [1]. We are now using online systems much more than

it was before via portable devices such as tablets and mobile

phones for new and evolving applications such as social media,

financial operations, online education, etc. We pay our bills,

purchase products, even work remotely via online systems

[2]. With so much of life happening online, user accounts

have become a natural target for criminals. Malicious attacks

against user accounts are common today. As a result of account

takeovers, users and companies might suffer from financial and

reputation loss.

In order to improve account security, one of the technologies

deployed is two-factor authentication, commonly referred to

as 2FA, a technology of authenticating users through two

different factors. When 2FA is applied, knowing the target’s

credential is not enough for attackers to compromise the

account due to the fact that there are now two different and

independent means of authentication. First, user enters his/her

credential. This is something you know factor and could be

personal identifier number (PIN), password, etc. Then, there

will be a second layer which might be something you have

or something you are. The more common case is something

you have, which asks user to prove that something (USB

stick, smart card, hardware token or mobile phone) is in

possession of the user. Mobile phone based 2FA might be

preferable due to convenience or cost reasons. It could be

implemented with SMS verification, which works as follows:

for the second factor, the system sends the one-time password

(OTP) value to the user over the mobile phone network via

the Short Message Service. Another convenient (and more

secure) way for 2FA is soft-generated OTP, which can be

generated by an application installed to mobile devices and

can work offline [3]. Almost everyone has a smartphone

today and implementing 2FA in this way is free of charge

(unlike SMS or hardware based solutions). For this reason,

it is important to analyze the software based authenticator

applications regarding the security level they provide.

One security issue with software application based OTP

generators is that the application generally comprises source

code compiled into an APK (for Android) or IPA (for iOS).

In order to produce an OTP value (for instance using TOTP

algorithm), secret seed value is used. If secret seed value

is revealed to the attacker, she could produce all of the

OTP values to be used throughout the entire lifetime of the

application. By reverse engineering, the attacker can analyze

applications installed on user’s smartphones and capture the

shared secret seed value in cleartext.

In this paper, we analyze the security of mobile authentica-

tors on Android platform. Android has security mechanisms,

one of which is referred as mobile application containers

isolating the mobile application from the mobile operating

system or any other applications installed on the same device.

In addition, vendors apply their own software protection

mechanisms, which include but not limited to obfuscation,

anti-tampering, root check, cryptography and device binding.

The combination of mobile application containerization and

vendor-supplied protections make the OTP generator applica-

tions more secure at least in theory. Our goal in this paper is

to analyze and understand the situation in practice and report

2020 International Conference on Information Security and Cryptology (ISCTURKEY) 18

/20/$31.00 ©2020 IEEE978-1-6654-1863-8

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:08:16 UTC from IEEE Xplore. Restrictions apply.

our findings for the chosen mobile authentication applications.

Our approach is to implement Android Reverse Engineering

techniques (mainly applying both static and dynamic methods

by executing apktool, Jadx-GUI, Frida, Objection, adb) using

non-commercial open-source tools. Upon installing authentica-

tor applications to mobile environment, we investigate whether

the shared secret value could be reached in cleartext from

storage and/or memory.

In this paper, we report that the secret seed value could be

obtained in cleartext with our methodology from both storage

as well as from memory in a surprisingly high number of au-

thenticator applications. We discuss the security implications

and possible countermeasures as well.

The rest of the paper is organized as follows. Section 2

overviews the related work. Section 3 provides the prob-

lem definition, threat model and our assumptions. Section

4 demonstrates our attack simulations. Section 5 shows our

findings. Section 6 presents a general discussion and Section

7 gives implications of our results. Finally, Section 8 finishes

up our paper by concluding remarks and possible future work

directions.

II. RELATED WORK

Although there are a number of researches about TOTP, not

much of them are directly related to fetching shared secret

value [4] [5] [6] [7]. Philip Polleit and Michael Spreitzenbarth

worked on fetching shared secret seed value from mobile

authenticators [8]. They analyzed mobile authenticators with

respect to cloning possible, device integrity check, encrypted

seed on storage, PIN protection, secure SSL protection. Also,

Bernhard Mueller has published an article about hacking

soft tokens on Android, showing methods how to investigate

tokens. Bernard’s article focused on analysing tools and strate-

gies used for both static and dynamic analysis with the aim

of fetching shared secret seed value [9].

There are researches about Android Keystore as a secure

key storage solution [10] [11] [12] [13]. Also, there is a

research that proposes a system called SecurePay, which is

about securing two factor authentication scheme under fully

compromised environment, providing authenticity, integrity of

any 2FA transaction [14].

A series of academic efforts involve the development of

TOTP for security solutions. Iman, Mardi and Kiki’s study

discusses One-Time Password installed on a mobile device

in which the password is randomized using a combination

of SHA256 and Time-based One Time Password algorithms

[15]. sdf Jianxun’s paper describes TOTP generation algorithm

making the counter replace with timer, and builds an im-

proved authentication method consistent with Three-Protocol

of HOTP authentication method based on TOTP [16].

Azhari, Lucgu and Carolus’ research discusses securing

Android mobile banking applications from reverse engineering

and network sniffing. They showed that once applications

implement code obfuscation, static string encryption method,

Native C and C++ implementation and add dead code, it will

be harder for reverse engineers to analyse the application [17].

Contributions
We make the following contributions; 1) In addition to

analyzing shared secret seed value on storage, we analyze

shared secret value on memory as well. 2) We plan our threat

modelling as realistic as possible in order to answer how

far attackers can go. 3) We analyze 11 2FA application with

respect to ProGuard usage, advanced obfuscator usage, anti-

tampering resistance, KeyStore usage as well as device binding

implementation.

III. BACKGROUND

In this section, we discuss the necessary background infor-

mation for our threat model.

A. Android OS and Its Built-in Security Measures

Android is an open source, Linux- based operating system.

Being an open source operating system is the first choice

of both developers and consumers. Android runs on top of

Linux kernel. In Android, Linux kernel is modified in such

a way that Linux kernel works better in smartphones and

tablets. Although application developers develop their apps

in Java or Kotlin, Android OS services are mostly written in

C/C++. Android Runtime is an environment on which Android

applications run. Android applications are Dalvik Executable.

Classes.dex file contains all the byte code in order to be run.

Android Run Time (ART) is the default run time environment

as of Android 5.0. In earlier versions, DEX byte code is

executed on Dalvik Virtual Machine environment (DVM).

Before ART, Dalvik used to convert byte code at runtime on

the fly when the app is run. This process is known as Just-in-

Time (JIT) approach. With the advent of ART, application’s

byte code does not need to be converted into machine code

every time it starts. Because this process is done during

installation process. This process is also known as ahead-of-

time compilation [18].

There are a couple of built-in defense mechanisms available

on Android. They can be listed as follows:

Linux user-based access model: The existing storage

layout mechanism on Android is different from the usual

Linux kernel storage layout mechanism. Each application on

Android has its own directory under /data/data. Due to the

fact that each application runs as different user on Android

OS, access control for each application is ensured based on

per application, that is, per user. User of an application is

the owner of the process ID, meaning each application is

assigned a separate process ID (PID) by Linux based on

its UID. Android OS ensures proper basic access control on

files for non-root users. In other words, each application can

only access its application specific data directory within the

restriction of Linux-based privilege control [19].

Android Sandboxing: Each application runs on its own

Sandbox environment on Android. By default, applications

can’t interact with each other and have limited access to the

OS. One application cannot access to another application’s

resources due to Android Sandboxing that is isolating each

application in its virtual machine. Android makes uses of

2020 International Conference on Information Security and Cryptology (ISCTURKEY) 19

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:08:16 UTC from IEEE Xplore. Restrictions apply.

UID to implement kernel level sandboxing [20]. In normal

Linux kernel, every process runs with the current user’s UID.

Android takes it a step further so that each application is

assigned a UID to isolate application resources.

Secure IPC: IPC, standing for Inter-Process communica-

tion, describes the mechanisms used by Android application’s

component or other applications available on the same device

to communicate with each other securely.

Application Signing: All Android applications need to be

digitally signed with a certificate whose private key is held

by the application’s developer before installing on Android

device. Otherwise, Android application will not be able to run

on the device. In other words, any application that is not signed

will not be able to be installed to Android device. Therefore,

application must be signed before installation process. The

Android system uses the certificate as a way of identifying

the author of an application and establishing trust relationships

between applications [21].

Permissions: Application defines but user grants those

permissions. Permissions are declared by the developer of

the application. AndroidManifest.xml file will have all the

details related to permissions. Installed application asks for

permissions in order to use related APIs. If permission is

rejected by the user, application will not be able to make

API call. While Android version 5.1 and before ask for

permissions during the installation process, Android version

6 and successors ask for permission once the permission is

needed.

Google Bouncers: In order to prevent malicious Android

application to be present on Google PlayStore, Google intro-

duces a service called Google Bouncers that automatically

scans applications and developer accounts with the aim of

probing malicious activities.

B. Android Application Overview and Architectures

An Android application is an application running on An-

droid OS. Android applications can be written mainly using

Java and Kotlin language. However, Android also supports

C/C++ native implementation. These are called native ap-

plication development. On the other hand, there are cross

platform ways where developers write code and then build

the mobile application for both Android and iOS platforms

simultaneously. This type of mobile application development

is called cross platform mobile application development and

developers can use React Native, Xamarin, Flutter, Ionic and

more to build cross platform applications.

Android application development process is as follows: First

of all, developers write source code, then source code is

compiled through Java compiler (javac) so as to produce Java

byte code. These class files cannot be run on Android device

because of the fact that Android has its own byte code format,

that is, Dalvik. Next, produced Java byte code is passed to Dex

Compiler in order to generate Dalvik byte code. Classes.dex

is produced as a result of this step. Java byte code is trans-

lated into Dalvik executable because Android applications are

basically Dalvik executable files. Once dalvik executable files

are obtained, AndroidManifest.xml, resources, libraries, dalvik

executables are zipped into an apk package. Upon producing

apk package, apk needs to be signed so that apk will be ready

to be installed. Android applications can be self-signed, mean-

ing developers themselves can sign an application. Developers

do not have to use Certificate Authority (CA) to register their

public keys. AndroidManifest.xml and other constituents will

be discussed deeply at Android Reverse Engineering section.

Briefly, every application must contain AndroidManifest.xml

and it is summary of an application indicating permissions that

application needs, components application include, minimum

SDK version, target SDK version and more. It is important

to understand this figure because we will follow the reverse

steps while reverse engineering. Steps can be summarized in

Figure 1:g

Fig 1: Android Application Development Cycle

C. Android Application Components

Android applications are made up of application compo-

nents that are Activity, Intent, Service, Broadcast Receiver,

Content Provider. An application may contain either some of

them or all of them.

Activity: Activity provides a screen that user interacts with.

So, user can perform actions. Usually, one activity corresponds

to one screen. Most apps contain multiple screens, meaning

they make up of multiple activities. Moreover, each activity

may start another activity. All of screens in an application are

called activity.

Intent: Intent is an object used to request an action from

another Android application component. These actions are to

start an activity, service and deliver a broadcast.

Content Provider: Content provider is used to present

data to external applications as tables. When one application

wants to share its data with other applications available on

phone, content provider is a way to share its data with other

applications and it acts as an interface to perform standard

database functions such as insert, query, update, delete if

another application has proper permissions.

Broadcast Receiver: It is a component that responds to

a system-wide broadcast messages. Broadcast messages may

include battery low, headset plugin.

2020 International Conference on Information Security and Cryptology (ISCTURKEY) 20

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:08:16 UTC from IEEE Xplore. Restrictions apply.

D. Application Security Measures

In section 3.A, we look at default security mechanisms

provided by Android OS. Upon overcoming default security

mechanisms of Android applications, there is no other security

mechanism in front of the cyber criminal unless Android

application itself adds additional security mechanism. Here

are some of additional security mechanisms further protect

the application from cyber criminals.

ProGuard Obfuscation: Although ProGuard is used for

shrinking and optimizing the application, it is also used

for obfuscation. Consequently, it is harder for the reverse

engineers to read dex byte code [22]. Its main job regarding

obfuscation is to rename packages names, class names, field

names, method names, parameter names, namely, it renames

everything related to source code.

Advanced Obfuscation: With the help of advanced obfus-

cators, code base can be protected by intentionally making use

of syntactic and semantic errors into the decompiled program

while the original behaviours of the byte code is still preserved.

Android KeyStore: Android KeyStore, letting developers

store cryptographic keys in a container, makes cryptographic

key extraction process more difficult [23]. The objective is

to remain cryptographic keys non-exportable while the keys

can bu used for cryptographic operations once they are in key

store.

Anti-Repackaging / Anti Patching: Patching is a set of

changes to a software application with the aim of updating, fix-

ing, improving software. The benign reason to patch a software

is to fix vulnerabilities and bugs, add additional features, im-

prove usability, performance and much more. Patching makes

modification of the compiled software application conceivable

once the source code is unavailable, requiring an exceptional

understanding of the software program. It generally includes

dealing with low level codes such as assembly and smali in

addition to high level pseudo code. Conversely, the malicious

intent is disabling anti-reverse engineering precautions, inject-

ing malicious code to software program, crack application not

to pay for subscription fee, software piracy and more. Anti-

patching makes software program harder for a reverse engineer

to modify. Anti-patching may take form of integrity checks,

anti-debugging, resulting in malfunctioning the program or not

functioning at all.

Device Binding: In some situations, we want values to be

more random where the values are cryptographic keys, OTPs

etc. Once we use values that are unique to user’s environment

such as MAC address, IMEI number then that gives extra

randomness regarding values produced.

Encryption Sensitive Information on Storage: Shared

secret seed value is one of the most important value an

authenticator application has. It is important that it should not

be kept in cleartext format. Encrypting shared secret seed value

is additional security mechanism to increase security posture

of authenticator application. It can be mapped to Insecure Data

Storage on OWASP Top 10 mobile.

E. 2FA Techniques and TOTP Protocol

Two factor authentication is an authentication process re-

quiring two different authentication factors to authenticate an

account. A factor can be described as a way to authenticate an

account into computer system, online service that an account

is who they say they are. Most common authentication factor

used today is username/password pair. As passwords are

vulnerable to brute-force attacks, dictionary attacks, rainbow

table attacks, more systems and individuals started using two

factor authentication (2FA) in order to secure their digital

accounts. People usually consume many systems to login,

leading the user to remember too many passwords. This causes

another vulnerability what we referred to as password re-use.

For this reason, many vendors and service providers suggest

using 2FA for their customers in an attempt to avoid data

breaches and password loss.

Authentication factors can be mainly categorized as follows:

• Something you know: This could be password, personal

identifier number (PIN), answers to secret questions,

keystroke pattern.

• Something you have: User has something in her/his

possession such as credit card, hardware token, mobile

device that can be sent codes, OTP generator application.

• Something you are: This type of authentication refers

to unique physical attributes that are inherent to human-

being like fingerprint, retina scan, voice recognition.

• Somewhere you are: This type of authentication relies

on where the user is to prove their identity.

A common example of 2FA requires something you know

and something you have. Usually something you know and

something you have can be achieved by username/password

and SMS verification, respectively. Although SMS verification

provides more security than single-factor authentication, SMS-

based 2FA is not very secure on account of the fact that

SMS messages can be intercepted by the attackers [24] [25].

There are other ways to perform 2FA by using mobile device,

one of which is producing the verification code by means of

mobile application. Google, Microsoft and other big vendors

use one time passwords (OTP). A mobile application installed

on user’s mobile phone creates a temporary, nearly valid 30

seconds, single use code based on the time of the day with the

help of TOTP protocol. This strict timeline makes it hard for

attacker to circumvent the OTP value, namely, second factor.

F. Lifecycle Management of TOTP

Published as RFC 6238 by the Internet Engineering Task

Force (IETF), time-based one time password (TOTP) algo-

rithm generates single use only passwords, also known as

tokens, that are only valid for a certain time period. Generated

tokens are based on shared secret seed value.

Moreover, TOTP algorithm is an extension of HOTP algo-

rithm, standing for HMAC based one time password (HOTP),

published as RFC 4226. HOTP algorithm is used to produce

a one time password based on a shared secret seed value and

a counter.

2020 International Conference on Information Security and Cryptology (ISCTURKEY) 21

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:08:16 UTC from IEEE Xplore. Restrictions apply.

Suppose that user has installed Google Authenticator appli-

cation on a mobile device. The user has two different choice

in order to supply shared secret seed value. First, service

provider (Facebook, Google, Bank account etc) generates a

shared secret seed value with additional information. Shared

secret seed value and additional information (service provider

name, algorithm used etc) are embedded in a QR code. Then

user scans the produced QR code by a mobile app such as

Google authenticator. Secondly, user manually enters shared

secret seed value. Upon agreeing on shared secret seed value,

mobile authenticator application such as Google Authenticator

starts generating OTP value based on the shared secret seed

value and current time.

How TOTP is Calculated?
We discussed earlier that OTP value is generated based

on shared secret seed value and current timestamp. Current

timestamp is converted into Unix Epoch Time, which is the

number of seconds that have elapsed since 1 January 1970

00:00:00, not counting leap seconds. Due to the fact that

every time current time changes, OTP value will change

every second. In order to prevent that time step is calculated

according to the following equation:

N = floor (T(unix) / Ts), where

N = number of time steps elapsed since Unix Epoch Time

floor = function rounding a number downward to its nearest

integer

T(unix) = number of seconds elapsed since 1 Jauary 1970

00:00:00, not counting leap seconds

Ts = Time step. By default, it is 30 seconds.

Let’s assume current timestamp is 1600519285

T(unix) = 1600519285

N = floor (1600519285 / 30) = 53350642

Convert N into hex format. The hex value must have 16 hex

characters (8 bytes). If it is not 16 hex characters, prepend with

0’s. N(decimal) = 1600519285

N(hex) = 0x0000 0000 5F65 FC75

The steps to calculate OTP value:

1) Calculate N(hex).

2) Convert the hexadecimal value into a 8 bytes array and

assign this value to variable m (message)

3) Convert the shared secret key (cozkan23456cozkan) into

a 20 bytes array and assign this value to variable K.

The shared secret key is a randomly generated 20 bytes

number which is base-32 encoded. For readability, this

key is divided in groups of 4 characters and all in lower

case.

4) Calculate HMAC hash using HMAC-SHA1 algorithm

as shown in Figure 2.

This HMAC hash size is 160 bits (20bytes) Lets assume

the HMAC value is

9a ee 6a 13 70 32 a0 d9 b5 e5 37 8f 89 28 76 2f 68 3c

0f 0a

Fig 2: HMAC calculation within TOTP algorithm
5) Get last 4 bits of hash value and convert it into integer

value. In this case, it is 0xA, representing integer value

of 10. This integer value is the offset.

6) Get the 4 bytes from the HMAC hash based on the offset

value.

7) Apply ANDing operation with 0x7FFFFFFF

378F8928 AND 7FFFFFFF = 5F65 FC75 in decimal

1600519285

8) Calculate the Token = 1600519285 % 10n where n is

the token size. Token = 519,285

This operation is executed on both mobile application

and server side. If the values are matched, authentication is

allowed. Otherwise, authentication is denied.

G. Android Keystore

Although full-disk encryption and file-based encryption

provide protection data on Android storage, it may not be the

best option when it comes to storing sensitive data like shared

secret seed value, passwords, session IDs, tokens. The problem

in this scenario is that if the device is fully compromised and

therefore attacker gains root access then attacker may circum-

vent this scenario once the user has entered their password. As

a result, attacker can see unencrypted data including sensitive

ones. One of the solution arises is to encrypt sensitive data

before storing it under application specific data directory. In

this case, another problem arises, that is, data will need to be

decrypted at some point. Therefore, there must be a decryption

key in order to decrypt the encrypted data. The problem is

how decryption key be protected and located? This is where

Android Keystore comes into play.

If we read the official documentation of Android Keystore,

it says “The Android Keystore system lets you store cryp-

tographic keys in a container to make it more difficult to

extract from the device. Once keys are in the keystore, they

can be used for cryptographic operations with the key material

remaining non-exportable. Moreover, it offers facilities to

restrict when and how keys can be used, such as requiring

user authentication for key use or restricting keys to be used

only in certain cryptographic modes.” We can infer from the

official documentation that it can store cryptographic keys

(public, private keys) and perform cryptographic operations

using stored keys (encrypt, decrypt, sign, verify etc)

Keys are generated and stored in Android Keystore. Public

key can be used to encrypt sensitive application data like

shared secret seed value, password, token before they are

stored in the application specific data directory. Likewise,

private key is used to decrypt data when needed. While cryp-

tographic operations are being executed on data, keys never

2020 International Conference on Information Security and Cryptology (ISCTURKEY) 22

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:08:16 UTC from IEEE Xplore. Restrictions apply.

leave Android keystore. In addition to that, an application can

only fetch its own keys.

Key extraction can be prevented in two different ways.

Firstly, key material never enters the application process. In

other words, key material never leaves Android Keystore.

When cryptographic operations are done on values, values are

provided into a system application that handles all crypto-

graphic operations and returns result to application. Conse-

quently, key stored in KeyStore never leaves the KeyStore.

The other is that key material may be bound to the secure

hardware such as Trusted Execution Environment (TEE),

Secure Element (SE).

H. Android Reverse Engineering

Reverse Engineering is the process of analyzing a system to

identify its components, and create a blueprint of the system

to understand functions, hidden components. The purpose here

is to understand how it was built [26]. Android application

development process has been discussed at Section 3.2. Recall

that developers write Java code and Java code is eventually

compiled into DEX byte code. Reverse engineers work oppo-

site direction of steps as depicted in Figure 3.

Android application with extension of apk is nothing but

an archive file containing all apk contents. When we unzip

the archive, we will get a list of files and folders as follows:

Classes.dex, AndroidManifest.xml, META-INF, res, assets and

lib. However unzipping an APK and decompiling an APK

does not refer to same thing. The reason why they are not

the same is that when you just unzip the apk file you will see

the encoded AndroidManifest.xml and compiled dex files. To

be able to overcome this issue we need to use apktool so as

to decompile apk.

Apk contents are as follows:

AndroidManifest.xml: Every application has AndroidMan-

ifest.xml. It is summary of the application and specifies main

components of application as well as holding most of config-

uration details about Android application. minSdkVersion and

targetSdkVersion are specified in this section.

META-INF: Certificates are in this directory. It contains

information about developer who has written the application

such as name, company name, validity period. If certificate

gets expired, app loses its presence on Google PlayStore. Also,

it checks integrity of the files that are present in this package.

res: This folder contains raw resources necessary for ap-

plication such as images, application icons, bitmaps, layout

definitions, strings.

Classes.dex: These are Dalvik byte code with DEX file

format. Source code written by the developers is eventually

compiled into DEX file format. This DEX file is actually

executed on Android device.

lib: This directory contains native libraries mostly written

in C/C++.

assets: This folder contains files such as music, video.

Once we decompile our apk via apktool reverse engineer

will see APK contents listed above and additionally smali

codes. AndroidManifest.xml will be in a human-readable

format. Smali is human-readable format of Dalvik byte code

and refers to the Android instructions. We can do an analogy

between assembly code in C/C++ and smali in Android. Smali

is like assembly language in different computer architectures.

Then, in order to analyze classes.dex files we have two options.

First, we can use dex2jar tool in order to translate dex file into

jar then use JD-GUI. Secondly, we can use jadx-gui tool so

that we do not have to use dex2jar tool and JD-GUI separately.

You can use just Jadx-GUI instead of using both dex2jar and

JD-GUI. Upon completing these steps we will be able to see

corresponding Java source code. Besides, there is a folder

called smali once we decompile apk with the help of apktool.

In this folder, there are smali codes of the application. If there

is an obfuscation on Java code, you can use both obfuscated

Java code and smali code so that you can pair codes and as a

result, you figure out obfuscated code.

One of the key factor for success while reverse engi-

neering is to find out where to start for analysis. Android

applications can be large; therefore, reverse engineers can-

not analyse all aspects of applications. For this reason it

is essential for reverse engineers to know where to start

their analysis. There are three main bases regarding where

to start analysis. First, what is your objective while reverse

engineering? In most cases, we do reverse engineering to

answer a specific question. In this paper, these are what is

the algorithm generating OTP value, where to fetch the shared

secret seed value, whether there is device binding, the process

of generating OTP value and more. We should remember

what our objective is and go back to it when we are lost

while reverse engineering. Secondly, reverse engineers should

track API calls. Reverse engineers should keep track of API

calls related to their objective. Lastly, application entry points.

Sometimes, we cannot know where to start the analysis. In this

case, application entry points are good starting points [27].pp y p g g p

Fig 3: Android Reverse Engineering Process
Our objective in this paper is to fetch shared secret seed

value in cleartext format from both storage and memory. We

will perform steps as depicted in Figure 3. As a result, we

see pseudo source code, then search for keywords like secret,

totp, hotp, seed, hash, generate and more. What is next, we

investigate API calls and do API call traceback to understand

how they operate and look for clues regarding shared secret

seed value. In addition, we investigate class definitions and

instances in code to be able to see file directory storing shared

secret seed value. In AndroidManifest.xml, there are activities

related to screen displaying current OTP value. Also, we

investigate intent-filters and actions related to those activities.

I. Android Reverse Engineering Tools

In this section, we discuss necessary tools required for our

threat model and attack simulation. We install static analysis

tool to perform analysis without running applications. In

2020 International Conference on Information Security and Cryptology (ISCTURKEY) 23

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:08:16 UTC from IEEE Xplore. Restrictions apply.

addition, we install dynamic analysis tools to perform analysis

while applications are running.

• apktool: Apktool, used for reverse engineering of closed

source compiled APKs, can decode Android applications

almost to its original form and rebuild them after making

some modifications. In our research, we use apktool to de-

compile applications and analyze AndroidManifest.xml,

classes.dex, libraries, certificates etc. In addition, we use

apktool to rebuild the application after making some mod-

ifications on smali code in order to test anti-tampering

resistance. This process is also known as re-packaging.

• adb: ADB, standing for Android Debug Bridge, is a

tool letting you communicate with Android Emulator,

in our research, Genymotion. In system administration

world, it is like SSH. We use adb in an attempt to

perform tasks such as installing apps, remote connection

to Android emulator, directory traversal on Android file

system, analyzing of application specific data directories

under /data/data, pushing and pulling files to/from An-

droid smartphone. To sum up, it provides Unix shell. It

works based on client-server model. Server listens client

to connect.

• Jadx-GUI: Jadx-GUI, Dex to Java decompiler, is a tool

used for reverse engineering of Android applications. It is

a GUI-based tool used to produce Java source code from

Android dex and apk files. To be able to decompile dex

classes and decode AndroidManifest.xml we generally

use JADX-GUI tool. Moreover, it includes built-in de-

obfuscator in an attempt to de-obfuscate ProGuard usage.

With the help of GUI based features, we can perform

things like full text search, find usage, jumping to declara-

tion, viewing decompiling code with highlighted syntax.

• Android Studio: Android Studio is the official Integrated

Development Environment (IDE) for Android app de-

velopment, based on IntelliJ IDEA and is required to

build Android applications. On top of IntelliJ’s powerful

code editor and developer tools, Android Studio offers

more features enhancing your productivity when building

Android apps. We use Android Studio in order to analyze

.hprof files, that is, heap dump files.

• Memory Profiler: Memory Profiler is a component in

Android Profiler that helps you identify memory leaks. It

shows a realtime graph of your app’s memory usage and

lets you capture a heap dump, force garbage collections,

and track memory allocations.

• JD-GUI: JD-GUI is a standalone graphical utility that

displays Java source codes of .class files. You can browse

reconstructed source code with JD-GUI for instant access

to methods and fields. It allows you to browse class files

and Java modules hierarchy.

• Frida: Frida is a dynamic instrumentation toolkit for

developers, reverse engineers and security researchers

allowing them to inject JavaScript code at runtime. This

tool allows researchers to hook into applications and

performs run time analysis. Frida’s capabilities include

but not limited to run time application analysis, instantiate

Java objects, overwrite Java method implementations,

scan process memory for occurrences of a string, enu-

merate native function calls.

• Objection: Objection, short for object injection, is a

runtime mobile exploration toolkit allowing reverse engi-

neers to bypass SSL pinning, enumerate keystore, explore

classes, patch applications, interact with file system,

discover loaded classes and more. Objection is powered

by Frida dynamic instrumentation toolkit.

• SQLite Browser: Android has built-in SQLite database

implementation. SQLite is an open source database al-

lowing users and developers to perform CRUD (Creating,

Reading, Updating and Fetching) operations on database.

SQLite Browser is a tool used to connect and perform

database operations on SQLite database.

IV. PROBLEM DEFINITION, THREAT MODEL AND

ASSUMPTIONS

Recall that OTP value is a product of TOTP algorithm with

mainly two parameters. These two parameters are the same

for both server side and mobile application, which are shared

secret seed value and current timestamp. To be able to generate

OTPs registration process also known as provisioning must

be done. During registration process shared secret seed value

is agreed upon. Upon completing provisioning, shared secret

seed value is shared between two entities.

When users log into their accounts or execute an 2FA

protected transaction they have to prove that they possess

OTP value. Since shared secret seed value, HASH function

and current timestamp are same for two entities, both server

and the mobile authenticator application generate the same

OTP value. The problem in this case is that everything is

known except shared secret seed value to attackers. If attackers

somehow fetch shared secret seed value then they may bypass

second factor, which is something you know for our situation.

We can conclude the main problem as “knowing shared secret

seed value might be enough to bypass the second factor if

second factor is an OTP value produced by software based

authenticator applications”.

As for assumptions, we suppose the fact that provisioning

step has been successfully finished and mobile authenticator

has been closed at least once. It is much more realistic

once mobile authenticator application has been closed at least

once. Then continue producing OTP value. Furthermore, in

this research attacker has root access to system. This can be

achieved as follows: The attacker exploits a vulnerability on

the system, physical access to rooted Android device, device

is rooted. Nowadays it is common to find vulnerabilities that

lead to remote code execution and vulnerabilities to evelate

the privileges. [28] [29] [30] [31] [32] [33]. Also, rooting

the Android device is not uncommon. Some applications

on various store including Google Play Store require root

permission to be executed. As a result, this is a realistic

scenario for today’s environment.

2020 International Conference on Information Security and Cryptology (ISCTURKEY) 24

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:08:16 UTC from IEEE Xplore. Restrictions apply.

In our research, our threat modeling tries to fetch secret

key both from storage and memory. We executed black-box

tests, meaning we do not have any knowledge and source code

regarding applications. We take APK file and start analyzing.

We use Genymotion as emulator application with Google

Nexus 5, Samsung Galaxy S 10 as smartphones, with API level

of 23 and 29 respectively. We have installed necessary tools

(apktool, adb, jadx-gui, Android Studio, Frida, Objection) on

Ubuntu VM, virtualized via Virtual Box. In addition, we

install Android Studio on Windows 10 client machine. These

machines are on same subnet. Our threat modeling is as

follows: After downloading apk, we decompile the application.

Next, we perform static code analyzes in order to understand

apk’s functionalities, methods and deeper understanding of

code in relation to OTP operation process. Once we gain

understanding of APK we install apk into emulator by using

adb. What is more, we perform registration process by entering

manually shared secret seed value. In our research, we enter

shared secret seed value manually if application has that

option to make sure that we obtain shared secret seed value

truthfully. Next, we close authenticator application. Then we

close mobile phone. Next we open phone and we are ready

to attack against shared secret seed value. Once we complete

these steps, we proceed to the next step.

A. Threat Modeling of Fetching Shared Secret Seed Value from
Memory

There are two different procedures when it comes to fetch-

ing shared secret seed value from memory. The first procedure

is as follows, which is by using adb tool.

1) Currently, we should see OTP value on application

screen.

2) When we see it, we will connect to emulator by using

adb with root.

3) Identify authenticator’s process id (PID) via ps com-

mand.

4) Execute exit command in order to come back to your

host. Note that you are still connected to the emulator.

5) Create a heap dump by using adb. Command

is as follows: adb shell am dumpheap PID

/data/local/tmp/appname.hprof.

6) For analysis, pull the generated file to your host ma-

chine.

7) Analyze heap dump on Android Studio by using Mem-

ory Profiler feature.

The other way is to directly use Android Studio. Here are

the steps that we follow in order to fetch shared secret seed

value from memory.

1) Open Android Studio.

2) Click Android Profiler button.

3) Hit “start a new profiling session” button.

4) Select appropriate emulator and then select authenticator

application.

5) It starts profiling the application.

6) Prepare initial setup of application and provisioning step.

7) Go back to Android profiler and select the memory

section.

8) Hit Java dump heap. Then analyze the memory.

You can take many heap dumps as you wish. But you can

not take consecutive seconds of dump heap. You take a heap

dump, at least 3 - 4 seconds later you can take another heap

dump. This is main limitation of open source tools, which is

discussed in Shortages of Our Threat Modeling section.

B. Threat Modeling of Fetching Shared Secret Seed Value from
Storage

Here are the steps that we follow in order to fetch shared

secret seed value from storage.

1) Currently, we should see OTP value on application

screen.

2) Analyze application in order to find where mobile au-

thenticator stores shared secret seed value.

3) Navigate to that directory on file system.

4) Analyze the folder containing shared secret seed value.

C. Shortages of Our Threat Modeling

In our research, we only use open source tools. We

did not use any commercial tool. The main shortage of

our threat model comes from fetching shared seed value

from memory. You take a heap dump by using adb with

the following command : adb shell am dumpheap PID
/data/local/tmp/appname.hprof. You hit these commands any

time you want and you take a heap dump of that time,

such as t0. At least, after 3 4 seconds, you can take another

heap dump. Unfortunately, you can not take heap dump of

consecutive second. This is our main limitation regarding

fetching shared secret seed value from memory. However, in

order for authenticator to generate OTP, shared secret seed

value must be on memory in cleartext at some point. Without

consecutive heap dumps of every second, you may not be

able to fetch the shared secret seed value in cleartext format

in memory.

V. ATTACK SIMULATION

A. Chosen Applications

Chosen applications are as follows: Google Authentica-

tor, Microsoft Authenticator, Red Hat Free OTP, Blizzard

Authenticator, Epic Authenticator, Oracle Authenticator, Or-

acle Authenticator, SAP Authenticator, Sophos Authenticator,

Twilio Authenticator, Pixplicity Authenticator and SaasPass

Authenticator.

Although there are more applications available on Google

PlayStore it is infeasible to analyze all mobile authenticator

applications. It is enough to choose 11 application regarding

representativeness. We choose eleven applications according

to the popularity on Google PlayStore. Besides, they are all

free to download, install and use. Also, they all implement

TOTP and HOTP algorithm.

2020 International Conference on Information Security and Cryptology (ISCTURKEY) 25

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:08:16 UTC from IEEE Xplore. Restrictions apply.

B. Security Measures Investigated (What and How?)

In this section, we describe how we test whether additional

security mechanisms are applied on mobile authenticator ap-

plication.

ProGuard Obfuscation: ProGuard shortens names of your

app’s classes and members with simple letters such as A, B,

and junky strings such as p003io, p002 so on and so forth.

Upon decompiling application if we see class names, method

names, instance variable names or parameters we can conclude

that there is ProGuard applied.

Advanced Obfuscation: After checking de-obfuscation

button under Tools section at Jadx-GUI tool, it de-obfuscates

the ProGuard obfuscation to some extend. However, if there

is advanced obfuscator applied, there will be mostly junky,

irrelevant class names, instance variables, method names,

parameters as well as dead code in order to astonish reverse

engineer. We test whether applications have advanced obfus-

cator in place in this way.

Android KeyStore: We use objection in order to learn if

there is Android Keystore. We setup and configure Frida tool.

It is ready to attach mobile authenticator applications. Then

we use objection, which is powered by Frida. Once mobile

authenticator applications run, we explore application by using

objection related to KeyStore usage.

Anti-Tampering / Repackaging: We test anti-patching by

modifying some smali codes. After doing modification we

build the application with apktool again. If it allows us to

modify application, we can conclude that there is no anti-

tampering / repackaging implemented.

Encryption Sensitive Information on Storage: If shared

secret seed value is encrypted in storage we can conclude the

fact that there is encryption in place.

Device Binding: After decompiling source code we look at

device specific values such as imei number, mac address and

audit these values regarding where and how they are used.

C. Steps of Simulated Attacks

It is infeasible to simulate attacks against all mobile au-

thenticator applications listed above. We will simulate attack

against Google Authenticator for both storage and memory.

Recall our assumption that we can execute commands with

root privileges.

Once we configure related reverse engineering tools, fulfill

provisioning process as shown in Figure 4, close Google

Authenticator app, close mobile phone and start phone, then

we are ready to execute attacks against shared secret seed

value on Google Authenticator.

Fig 4: Google Authenticator Provisioning Process

Simulated Attacks with respect to Storage

After reversing Google Authenticator application in a static

manner, we come up with opening a sqlite3 database whose

name is databases as seen in Figure 5. The rest is to analyze

the database in an attempt to fetch shared secret seed value in

cleartext as seen in Figure 6 and 7.

Fig 5: Google Authenticator Static Reverse Engineering

Fig 6: Google Authenticator Fetching Shared Secret Key
from Storage

2020 International Conference on Information Security and Cryptology (ISCTURKEY) 26

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:08:16 UTC from IEEE Xplore. Restrictions apply.

Fig 7: Importing Google Authenticator’s database into
SQLite Browser

Simulated Attacks with respect to Memory
In this section, we attack Google Authenticator against

shared secret seed value. After fulfilling our assumptions,

we are ready to execute our threat modeling. We perform

heap dump operation on time t. What we mean is we do

not have any rule regarding timing. We take sample heap

dumps randomly on time t. Time t is chosen randomly. We

take random heap dumps. In other words, we do not have

specific algorithm regarding heap dump timing. The point in

this case is we cannot take heap dump of every consecutive

second. Once you perform heap dump, you can take another

heap dump at least 3 - 4 seconds later. Having took a heap

dump randomly on time t, we analyze it on Android Studio’s

Android Profiler component as seen in Figure 8 and see the

shared secret seed value in cleartext format.

Fig 8: Google Authenticator Fetching Shared Secret Key
from Memory

VI. FINDINGS

Red Hat Free OTP: This authenticator, with version Free

OTP 1.5, holds the shared secret seed value on storage

at directory /data/data/org.fedorahosted.freeotp/shared prefs/

tokens.xml with encoded format. Authenticator holds the

shared secret seed value on memory on time t as encoded.

T is chosen randomly.

SAP Authenticator: We analyzed SAP Authenticator with

version 1.2.8. There is a database file at /data/data/com.sap.csi.

authenticator/databases/DataVault. This file is encrypted. So,

we could not retrieve the shared secret seed value from storage.

Also, we look at other directories on storage. On the other

hand, we could not retrieve the value from memory on time

t. T is chosen randomly. Moreover, in this authenticator there

is a method called getIMEI(), it returns an empty string. This

method is never called somewhere in the codebase. Basically,

it is a deadcode.

Sophos Authenticator: We analyzed Sophos Authenticator

with version 3.2. Shared secret seed value is in cleartext

at /data/data/com.sophos.sophtoken/databases/databases. Also,

we would be able to fetch the shared secret seed value from

memory on time t.

Oracle Authenticator: This authenticator, with version

9.2, holds the shared secret seed value on storage at

/data/data/oracle.idm.mobile.authenticator/databases/OMADb.db

file in encrypted format. We see the email address in cleartext

format; however, we see shared secret seed value in encrypted

format. When it comes to fetching shared secret seed

value from memory, we would be able fetch the value.

OAMAccount class’ instance holds the values in unencrypted

form on t time. Moreover, this authenticator fetches specific

values such as MAC address, imei number, android id, then

passes them into compliance related methods. While those

values are not used for device binding, they are used for

compliance related methods.

Epic Authenticator: In this authenticator, we would

be able to fetch the shared secret seed value from both

storage and memory in cleartext format. Seed value is stored

at /data/data/com.epic.authenticator/shared prefs/com.epic.

otpkit.keystore.OtpAccountStore ACCOUNTS.xml file in

cleartext. At memory, OtpAccount class’ object holds the

shared secret seed value in cleartext format on time t.

Pixplicity Authenticator: We analyzed Pixplicity Authen-

ticator with version 1.0.4. In this authenticator, we could

not be able to fetch the shared secret seed value nei-

ther both storage nor memory in cleartext directly. Once

we analyze deeply, information such as shared secret seed

value, token type, issuer label and more are inserted into

/data/data/com.pixplicity.auth/databases/tokens.db. Next, we

analyze that secret value is stored in the type of BLOB. That’s

why we could not fetch shared secret seed value in cleartext

directly. On the other hand, shared secret seed value is broken

down into byte arrays. They perform what is known as security

by obscurity for memory side.

Blizzard Entertainment Authenticator: We analyzed Bliz-

zard Authenticator with version 2.4.2.9. We could not getch

shared secret seed value in cleartext format. Moreover, this

authenticator fetches device specific values such as imei num-

ber, MAC address, android ID and mobile phone model. Once

they fetch value, they are passed as parameter to getUUID()

method. In this method, these values are performed string

concatanetion operation and the method returns hash value

of string. Once you login a device, it controls whether the

2020 International Conference on Information Security and Cryptology (ISCTURKEY) 27

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:08:16 UTC from IEEE Xplore. Restrictions apply.

TABLE I
AUTHENTICATOR APPLICATIONS AND THEIR ADDITIONAL SECURITY MECHANISMS

Authenticator Apps Free OTP SAP Sophos Oracle Epic Pixplicity Blizzard Twilio Authy Google Microsoft SaasPass
ProGuard - - - + - - - - - - -

Advanced Obfuscator - - - - - - - - - - -
Device Binding - - - - - - - - - - -

Anti-Repackaging - - - - - - - - - + -
Insecure Storage - - + - + - - + + + -

Android KeyStore - - - + - - - + - + -

TABLE II
AUTHENTICATOR APPLICATIONS AND THEIR SHARED SECRET SEED VALUE FROM STORAGE AND MEMORY

Authenticator Apps Free OTP SAP Sophos Oracle Epic Pixplicity Blizzard Twilio Authy Google Microsoft SaasPass
Fetch Seed from Storage - - + - + - - + + + -
Fetch Seed from Memory - - + + + - - + + + +

device the user is currently logging in has changed or not.

If changed, user redirects to the restore page. Although these

values are not used for adding randomness to the algorithm,

they are used for account security itself.

Twilio Authy Authenticator: This authenticator, with ver-

sion 24.3.4, holds the shared secret seed value on storage

at /data/data/com.authy.authy/shared prefs/com.authy.storage.

tokens.authenticator.xml file. In memory, OtpAuthPayload

class’ object holds the shared secret seed value in cleartext

format on time t.

Google Authenticator: In this authenticator with version

5.10, we would be able to fetch the shared secret seed

value from both storage and memory in cleartext format.

Seed value is stored under /data/data/com.google.android.apps.

authenticator2/databases/databases file in cleartext. In memory,

AutoValue Account class’ object holds the shared secret seed

value in cleartext format on time t.

Microsoft Authenticator: In this authenticator with

version 6.2006.4198, we would be able to fetch the

shared secret seed value from both storage and mem-

ory in cleartext format. Seed value is stored under

/data/data/com.azure.authenticator/PhoneFactor-wal. In mem-

ory, SecretKeyBasedAccount class’ object holds the shared

secret seed value in cleartext format on time t.

SaasPass Authenticator: In this authenticator with version

2.2.24, it is not possible to fetch the shared secret seed value

from storage; however, it is possible in memory. In memory,

OTPAuthBarcode class’ object holds the shared secret seed

value in cleartext format on time t.

As seen in both Table 1 and Table 2, the result of appli-

cations tested can be summarized as follows: 5 applications

out of 11 hold shared secret seed value in cleartext format

on storage. In other words, 5 / 11 applications do not apply

any kind of encryption, encoding at all. 7 applications out

of 11 hold shared secret seed value in cleartext format on

memory in time t, which means more than half of applications

do not apply any kind of encryption or encoding operation

for memory. Also, Blizzard Entertainment Authenticator is

the only application that warns the user about the fact that

device is rooted and it may cause security issues. None

of the applications except Microsoft Authenticator applies

software anti-tampering. We could successfully re-package

applications except Microsoft. As a consequence, attackers

can decompile applications, add malicious payload, repackage

applications, sign applications and distribute applications with

malicious purpose or they can repackage the applications so

that they remove security mechanisms such as root detection.

What is more, it is important to note that no application

applies advanced obfuscator in order to avoid skilled reverse

engineers. By nature, there is no device binding regarding

OTP generation phase. All authenticators we tested implement

TOTP and HOTP. In addition to these, Blizzard Entertainment

Authenticator fetches MAC address, IMEI number and phone

model in order to secure not OTP value but OTP user’s

account.

While Android Keystore is de facto method in order to

secure cryptographic keys, only 3 out of 11 applications

implement Android Keystore.

VII. DISCUSSION

Android Keystore is used to store cryptographic keys in

a secure manner. Android Keystore generates a key, then

stores it securely. With that key, applications encrypt sensitive

information, in this case, shared secret seed value. Although

Twilio Authy Authenticator application possesses Android

Keystore, it stores shared secret seed value in cleartext format

under shared preferences. This may indicate a misuse of

Android Keystore or this may indicate backup issues. It is

a problem when encrypted secret keys are imported to device

B as long as decryption key is only in device A. The first thing

that came to our mind with respect to key store is that it may

be about backup feature. We thought when applications had

Android Keystore, backup feature could not work properly due

to encryption keys. However, we see that although Microsoft

Authenticator and Twilio Authy Authenticator possess key

store, they have backup feature. But in this case although they

implement Android Keystore, they store shared secret seed

value in cleartext format.

We also note that all mobile authenticator applications apply

TOTP and HOTP algorithm regarding producing OTP value.

2020 International Conference on Information Security and Cryptology (ISCTURKEY) 28

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:08:16 UTC from IEEE Xplore. Restrictions apply.

These algorithms do not require any device specific values

such as MAC address, IMEI number, leading OTP value

accounts more compact and portable to another device in case

users may lose their mobile device, or buy new mobile device.

If an application requires device specific unique values, it will

be more difficult to transfer/backup OTP accounts to another

device.

Philip Polleit and Michael Spreitzenbarth’s work include

but not limited to fetching shared secret seed value from

storage. However, we also showed that they can be fetched on

memory as well. Their work emphasizes on whether cloning

the database is possible, device integrity check, PIN protection,

Secure SSL Connection. Shared secret value can be attacked

over network by listening to network. If shared secret seed

value is transported over an unencrypted channel, it can be

fetched in cleartext as well. However, our threat model does

not cover that. As a matter of fact, we emphasize on using

static and dynamic reverse engineering techniques in order

to fetch shared secret seed value. In addition, we investigate

whether or ProGuard and advanced obfuscators are in place.

Because obfuscating the source code make static analysis

harder for reverse engineers. Besides, Android Keystore is a de

facto method to store cryptographic keys. Another issue is that

cryptographic keys need to be stored securely so that reverse

engineers cannot reach them easily. Our work concentrates on

more reverse engineering side.

VIII. IMPLICATIONS OF OUR RESULTS

In most situations, it is easier to fetch shared secret seed

value from memory than storage. In order to protect shared

secret seed value on storage, there are various options like

encryption with key stored in keystore, using White-Box

Cryptography. On the other hand, shared secret seed value

may be secured by security by obscurity on memory. Although

security by obscurity is not a perfect solution, it may deter

reverse engineers a bit.

In the event applications do not apply ProGuard and ad-

vanced authenticators, it is likely that reverse engineers can

analyze and understand the application. Also, authenticator

applications should not only rely on built-in protections that

are available on Android OS. Applications should also take

precautions against software tampering. In most cases, we

would be able to re-package applications. We could add a

meterpreter reverse tcp payload, sign application and distribute

application. Once users install repackaged APK, they will

connect back to our command and control server. On the

other hand, this is also used to bypass security mechanisms

such as root detection methods. We could delete root detection

methods, repackage the application and continue our analysis.

IX. CONCLUSION AND FUTURE WORK

Firstly, it is highly important to deploy two factor authen-

tication in order to increase account security. Because it adds

an additional factor to improve security posture compared to

single factor authentication.

As shown in Table 2, in most situations it is easier to

fetch shared secret seed value from memory.Using Android

Keystore or White Box Cryptography is sufficient to protect

shared secret seed values on storage.

Few applications have additional security mechanisms. The

others solely rely on built-in security mechanisms available

on Android OS. For this reason, devices having exploitable

vulnerabilities, users with low security awareness and rooted

devices are prone to be vulnerable to security attacks espe-

cially against shared secret seed values. We can conclude that

once shared secret values are fetched by attackers for these

authenticators, 2FA might suddenly downgrade to single factor

authentication.

Future work may include developing a tool that takes heap

dump of every consecutive second.

REFERENCES

[1] J. U. Sheetal, Purohit.D.N. and V. Anup, ”Increase in number of Online
Services and Payments through Mobile Applications Post Demonetiza-
tion”, 2019, pp 35-36

[2] R. Jones, ”Mobile banking on the rise as payment
via apps soars by 54 % in 2015”, 2016 [Online].
Available: https://www.theguardian.com/business/2016/jul/22/
mobile-banking-on-the-rise-as-payment-via-apps-soars-by-54-in-2015

[3] ”What is Two-Factor Authentication” [Online] Available: https://authy.
com/what-is-2fa/

[4] W. S. Park, D. Y. Hwang and K. H. Kim, ”A TOTP-Based Two Factor
Authentication Scheme for Hyperledger Fabric Blockchain”, 2018

[5] H. B. Hasbullah, I. A. Lawal, A. A. Mu’azu, and L. T. Jung, ”A
TOTP-Based Enhanced Route Optimization Procedure for Mobile IPv6
to Reduce Handover Delay and Signalling Overhead”, 2013

[6] E. Huseynov, J. M. Seigneur, ”Hardware TOTP tokens with time
synchronization”, 2019

[7] B. U. I. Khan, R. F. Olanrewaju, F. Anwar and M. Yaacob, ”Offline
OTP Based Solution for Secure Internet Banking Access”, 2018

[8] P. Polleit and M. Spreitzenbarth , ”Defeating the Secrets of OTP Apps”,
2018

[9] B. Mueller, ”Hacking Soft Tokens Advanced Reverse Engineering
on Android”,2016 [Online]. Available: https://gsec.hitb.org/materials/
sg2016/whitepapers/Hacking%20Soft%20Tokens%20-%20Bernhard%
20Mueller.pdf

[10] Poonguzhali P., P. Dhanokar, M. K. Chaithanya, and M. U. Patil, ”Secure
Storage of Data on Android Based Devices”, 2016

[11] T. Cooijmans, J. D. Ruiter and E. Poll, ”Analysis of Secure Key Storage
Solutions on Android”, 2014

[12] T. Cooijmans, ”Secure key storage and secure computation in Android”,
2014, pp 15-51

[13] G. Kasagiannis and C. Dadoyan, ”Security Evaluation of Android
Keystore”, 2018, pp 21-29

[14] R. K. Konoth, B. Fischer, W. Fokkink, E. Athanasopoulos, K. Razavi
and H. Bos, ”SecurePay: Strengthening Two-Factor Authentication for
Arbitrary Transactions”, 2020

[15] I. Permana, M. Hardjianto and K. A. Baihaqi, ”Securing the Website
Login System with the SHA256 Generating Method and Time-based
One-time Password (TOTP)”, 2020

[16] J. X. Zhao, ”Research and Design on an Improved TOTP Authentica-
tion”, 2013

[17] Azhari, L. Q. Muhammad and C. G. N. Tama, ”Android Mobile Banking
Application Security from Reverse Engineering and Network Sniffing”,
2016, pp 462-465

[18] S. R. Kotipalli and M. A. Imran, ”Hacking Android”, 2016, pp 87-101
[19] ”System and Kernel Security” [Online] Available: https://source.android.

com/security/overview/kernel-security
[20] P. K. Granthi and S. M. Bansode, ”Android Security: A Survey of

Security Issues And Defenses”, 2017, pp 543-544
[21] ”Signing Your Applications” [Online]. Available: https://stuff.mit.edu/

afs/sipb/project/android/docs/tools/publishing/app-signing.html
[22] ”Shrink, Obfuscate, and Optimize Your App” [Online]. Available: https:

//developer.android.com/studio/build/shrink-code

2020 International Conference on Information Security and Cryptology (ISCTURKEY) 29

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:08:16 UTC from IEEE Xplore. Restrictions apply.

[23] ”Android Keystore System” [Online]. Available: https://developer.
android.com/training/articles/keystore#java

[24] D. Buttan, ”Hacking the Human Brain: Impact of Cybercriminals
Evoking Emotion for Financial Profit”, 2020, pp 19-20

[25] A. S. Chaudhari, ”Security analysis of SMS and related technologies”,
2015, pp 34

[26] E. Eilam, ”Reversing: Secrets of Reverse Engineering”, 2011, pp 3-12
[27] M. Stone, ”Android App Reverse Engineering 101” [Online]. Available:

https://ragingrock.com/AndroidAppRE/
[28] S. Bakken, D. Weinstein, ”OnePlus Device Root Exploit:

Backdoor in EngineerMode App for Diagnostics Mode”, 2017,
[Online]. Available: https://www.nowsecure.com/blog/2017/11/14/
oneplus-device-root-exploit-backdoor-engineermode-app-diagnostics-mode/

[29] C. Davenport, ”OnePlus left a backdoor in its devices capable of
root access”, 2017, [Online]. Available: https://www.androidpolice.com/
2017/11/15/oneplus-left-backdoor-devices-capable-root-access/

[30] J. Gu, V. Zhang, and S. Shen, “ZNIU: First android
malware to exploit dirty cow vulnerability,” 2017. [Online].
Available: https://www.trendmicro.com/en us/research/17/i/
zniu-first-android-malware-exploit-dirty-cow-vulnerability.html

[31] D. Goodin, ”Attackers exploit 0-day vulnerability that
gives full control of Android phones”, 2019, [Online].
Available: https://arstechnica.com/information-technology/2019/
10/attackers-exploit-0day-vulnerability-that-gives-full-control-of-
android-phones/

[32] E. Xu and J. C. Chen, ”First Binder Exploit Linked
to SideWinder APT Group”, 2020, [Online]. Avail-
able: https://www.trendmicro.com/en us/research/20/a/
first-active-attack-exploiting-cve-2019-2215-found-on-google-play
-linked-to-sidewinder-apt-group.html

[33] L. Davi, A. Dmitrienko, A. R. Sadeghi and M. Winandy, ”Privilege
Escalation Attacks on Android”, 2010, pp 5-6

2020 International Conference on Information Security and Cryptology (ISCTURKEY) 30

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on March 08,2023 at 11:08:16 UTC from IEEE Xplore. Restrictions apply.

