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Muhammed Said Gündoğan4
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Abstract. White-box cryptography challenges the assumption that the
end points are trusted and aims at providing protection against an ad-
versary more powerful than the one in the traditional black-box crypto-
graphic model. Most existing white-box implementations focus on sym-
metric encryption. In particular, we are not aware of any previous work
on general-purpose quantum-safe digital signature schemes also secure
against white-box attackers. We present white-box implementations for
hash-based signatures so that the security against white-box attackers
depends on the availability of a white-box secure pseudorandom func-
tion (in addition to a general one-way function). We also present a hash
tree-based solution for one-time passwords secure in a white-box attacker
context. We implement the proposed solutions and share our performance
results.

Keywords: white-box cryptography · digital signature · white-box sig-
nature · quantum-safe signature · hash chain · one-time password · hash
tree.

1 Introduction

The standard cryptographic model (black-box model) assumes the end points
are trusted hence the secret keys in cryptographic implementations cannot be
observed while they are in use. The first work that challenged this assumption
is by Chow et al. [1] in 2002. The authors proposed an implementation of AES
algorithm to prevent secret key extraction even when an attacker has a full access
to the execution environment. Although their specific implementation was later
broken, their core idea of building up a key-dependent lookup table(s) from
which the encryption (and decryption) could be performed without a need for
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the cryptographic key remains highly relevant. Later, some dedicated white-box
ciphers have been designed with the same philosophy, which are not broken till
now e.g., SPACE [2] and SPNbox [13].

White-box implementations have the objective of preventing extraction of
cryptographic keys useful on a different platform. Instead of using keys directly,
an attacker may attempt to isolate the complete implementation code from the
environment, carry it to his own device and directly use it like a larger key.
These so-called code lifting attacks are assumed to be mitigated by the help of
the notion so called space-hardness (security against code lifting is quantified
by the amount of code that needs to be extracted from the implementation).
We also note that with additional software protection techniques such as device
binding and code obfuscation, the use of software may not be possible in other
hardware devices.

Up to now, white-box cryptography is mostly studied in symmetric encryp-
tion context. As detailed in Related Work section, proposals for white-box imple-
mentation of digital signature algorithms are rare and not sufficiently analyzed
from security point of view. In our work, we present simple and elegant designs
for white-box implementation of hash-based signatures and cryptographic prim-
itives desirable in authentication protocols. Although known for a long time,
hash-based signatures have received a new surge of interest due to their ability
to remain post-quantum safe [3]. We contribute to the literature by present-
ing implementations for hash-based digital signatures where the security against
white-box attacker depends not more than the availability of a white-box secure
pseudo-random function (in addition to a general one-way function). We also
show a hash tree based alternative to the hash chain primitive (useful for entity
authentication) to remain secure against white-box attackers on an untrusted
environment.

2 Lamport’s Signature Scheme

Lamport’s construction of one-time signature (OTS) is the first scheme which
relies solely on one-way (hash) functions for its security [4]. Although the effi-
ciency of this scheme has been improved in subsequent studies, for pedagogical
reasons, we prefer to use it to explain our core idea for making hash-based sig-
natures strong against white-box attackers.

As always, there are three algorithms defining Lamport’s one-time signature
scheme:

Let f be a one-way hash function with an output length of N .

Key Generation:
Input: Parameters L,N

L: the length of random numbers
2N : total number of random numbers

Output:
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For one-time private key, generate:
2N L-bit random numbers r1, r2, . . . , r2N
As one-time public key, compute:
pk = f(rk) for 1 ≤ k ≤ 2N (Distribute the public key securely as usual).
As another more useful notation, random numbers (pre-images) and
hash values (hash-images) could be indexed as follows, respectively:
ri,j(1 ≤ i ≤ N and 1 ≤ j ≤ 2) and pi,j(1 ≤ i ≤ N and 1 ≤ j ≤ 2)

Signing:
Input: M

M : message to be signed
h = f(M) (h has a length of N)

Output:
for 1 ≤ s ≤ N /* index value for bits of h */

if hs = 0 reveal rs,1
else reveal rs,2

as part of the signature

Verifying:
Input: Parameters M ′, r′s,j , pi,j , h

′

M ′: message received
r′s,j : signature received (1 ≤ s ≤ N)
pi,j : public key (1 ≤ i ≤ N and 1 ≤ j ≤ 2)
h′ = f(M ′)

Output:
”Accept” if for each 1 ≤ s ≤ N

if h′
s = 0 h(r′s,1) = ps,1

else h(r′s,2) = ps,2
”Reject” otherwise

3 White-Box Implementation of Lamport’s Scheme

Instead of storing all the random numbers constituting the one-time private
key, one can use a cryptographically secure pseudo random function (PRF) to
generate all the random numbers using a single secret (private) key. Instead
of using a general-purpose PRF (practically implemented using standard block
ciphers such as AES), we now introduce an implementation of Lamport’s scheme
secure in a (weak) white-box model [2] assuming that there is a white-box attack-
resistant (secure) block cipher which also behaves as a PRF.

Let f be a one-way hash function with an output length of N .
Let EK be a white-box secure block cipher (e.g., SPNbox [13]). EK is repre-

sented as one big key-dependent lookup table denoted as WBT -EK . We assume
key K is securely erased after WBT -EK is ready. For simplicity, we assume the
block length of EK is also L.



4 K. Bicakci et al.

Key Generation:
Input: Parameters L,N, IP

L: the length of random numbers (as well as block length of EK)
2N : total number of random numbers
IP : (randomly generated and stored) initial plaintext for WBT -EK

Output:
For one-time private key, generate 2N L-bit pseudo-random numbers:
for 1 ≤ k ≤ 2N rk = WBT -EK (IP + k)
As the one-time public key, compute:
pk = f(rk) for 1 ≤ k ≤ 2N (distribute the public key securely as usual).
For a more useful notation, random numbers (pre-images)
and hash values (hash-images) could be indexed as follows, respectively:
ri,j(1 ≤ i ≤ N and 1 ≤ j ≤ 2) and pi,j(1 ≤ i ≤ N and 1 ≤ j ≤ 2)
After the public key is generated, rk values are securely erased.

Signing:
Input: M

M : message to be signed
h = f(M) (h has a length of N)

Output:
for 1 ≤ s ≤ N /* index value for bits of h */

if hs = 0 compute and reveal rs,1 = WBT -Ek(IP + 2s− 1)
else compute and reveal rs,2 = WBT -Ek(IP + 2s)

as part of the signature.

Verifying:
Same as the original case (nothing changed).

4 Signing Multiple Messages with a Single Public Key

Lamport’s OTS scheme is only useful for signing a single message per single
public key hence its utility is quite limited. The problem of extending Lamport’s
OTS for multiple messages has already been extensively studied in the literature.
Most of the proposed schemes are variations of the early work by Merkle [5].

In Merkle’s original scheme, the tree is built for certification of additional
OTS public keys i.e., every node has three public keys, one for the message it-
self, one for the left child node, and one for right child node. With this scheme,
an infinite number of messages could be signed using a single root one-time pub-
lic key. Another, more popular implementation of Merkle’s scheme is adopting
a bottom-up approach rather than top-to-bottom one to sign multiple but finite
pre-determined number of messages. Here, first, the leaf N nodes (one-time pri-
vate keys and corresponding public keys) are prepared. Then, using hash values
of public keys, a binary tree is built. The final public key is the root of the node.
See Fig. 1 for an example of Merkle three with 8 leaf nodes.
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Fig. 1. Merkle tree to sign 8 messages.

Below, we first describe an insecure implementation of Merkle’s scheme and
then show how to make it secure in a white-box model.

Let f be a one-way hash function with an output length of N . Let EK be a
white-box secure block cipher. EK is represented as one big key-dependent lookup
table denoted as WBT -EK . We assume key K is securely erased after WBT -EK

is ready. We assume the block length of EK is also L.

Key Generation:
Input: Parameters L,N, IP, T

L: the length of random numbers (as well as block length of EK)
2N : total number of random numbers
IP : (randomly generated and stored) initial plaintext for WBT -EK

T : number of messages to be signed (T = 2n) (n is the height of the tree)
Output:

a. for 0 ≤ t ≤ T − 1
for 1 ≤ k ≤ 2N

generate 2N L-bit pseudo-random numbers:
rk,t = WBT -EK(IP + t ∗ 2N + k)
compute pk,t = f(rk,t)

For a more useful notation, random numbers (pre-images)
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and hash values (hash-images) could be indexed as follows, respectively:
ri,j,t(1 ≤ i ≤ N and 1 ≤ j ≤ 2 and 0 ≤ t ≤ T − 1)
pi,j,t(1 ≤ i ≤ N and 1 ≤ j ≤ 2 and 0 ≤ t ≤ T − 1)

b. Generate hashes of public keys as follows:
for 0 ≤ t ≤ T − 1

P [t] = p1,1,t||p1,2,t|| . . . ||pN,1,t||pN,2,t

a(0, t) = f(P [t])

c. Generate the root public key and distribute it securely (note that only
a single hash value constitutes the public key here):
As an example, consider the case given in Figure 1:
a(3, 0) = f(f(f(a(0, 0)||a(0, 1))||f(a(0, 2)||a(0, 3)))||f(f(a(0, 4)||a(0, 5))||f(a(0, 6)||a(0, 7))))

We note that a naive implementation either requires the random numbers
to be stored for later use or erase all data (except IP ) for later generation
once needed (soon, we will show why both of these are insecure options).

Signing:
Input: Parameters M, t

M : message to be signed
t = index of the leaf node for signing (0 ≤ t ≤ T − 1)

Output:
for 1 ≤ s ≤ N /* index value for bits of h */

compute (if not already stored):
rs,1,t = WBT -EK(IP + t ∗ 2N + 2s− 1)
rs,2,t = WBT -EK(IP + t ∗ 2N + 2s)

if hs = 0
reveal rs,1,t and compute and reveal f(rs,2,t)

else
reveal f(rs,1,t) and compute and reveal rs,2,t

as part of the signature.
Also additional nodes (hash values) up to the root node should be sent

as auxiliary information to make it possible to compute and verify the
root public key) (for instance a(0, 1), a(1, 1) and a(2, 1) should be sent
for t = 0 in the example shown in Figure 1).

Verifying:
Input:

M ′: message received
Signature received: r′s,j,t or f ′(rs,j,t)(1 ≤ s ≤ N)(0 ≤ t ≤ T − 1) and
auxiliary information received e.g., a′(0, 1), a′(1, 1), a′(2, 1)
Public key: a(3, 0)
h′ = f(M ′)
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Output:
for each 1 ≤ s ≤ N

if h′
s = 0
compute f ′(r′s,1,t) = ps,1,t

else
compute f ′(r′s,2,t) = ps,2,t

compute a′(0, t) = f(p1,1,t||p1,2,t|| . . . ||pN,1,t||pN,2,t)
Accept if a(3, 0) = f(f(f(a′(0, t)||a′(0, 1))||a′(1, 1))||a′(2, 1)) (for t=0)
“Reject” otherwise

Now, we show that the above scheme is not secure in a white-box model.
The underlying reason is that all the random numbers are computed (or al-
ready stored) during signature generation although not revealed as part of the
signature. This is required in order to compute the hash values for the ran-
dom numbers not revealed. Hash values are sent as part of the signature to let
the verifier to compute the value of a′(0, t) and verify the signature. However,
a white-box attacker having the ability to observe the internal state informa-
tion could identify and extract all the random numbers and use them to forge
a signature for any message he wants. Below, we show a slight change in the
implementation to make it secure against white-box attacker.

The change we require is to prepare all the hash values required to build
the signature once the message is ready, without a need to generate the random
numbers not required as part of the signature itself 5. For this purpose, after
all the component of one-time public key are computed by pk,t = f(rk,t) for
1 ≤ k ≤ 2N and 0 ≤ t ≤ T − 1, the values of pk,t are stored on the signer side.
Once a signature is required, signing algorithm is changed slightly as follows:

for 1 ≤ s ≤ N /* index value for bits of h */
if h′

s = 0
compute rs,1,t = WBT -EK(IP + t ∗ 2N + 2s− 1)
reveal rs,1,t and f(rs,2,t) /* f(rs,2,t) has been previously stored */

else
compute rs,2,t = WBT -EK(IP + t ∗ 2N + 2s)
reveal f(rs,1,t) and rs,2,t /* f(rs,1,t) has been previously stored */

With this change, a white-box attacker could not observe a random number
required to forge a signature for any message different than the message the user
has already signed.

To summarize, an implementation of hash-based signatures is not secure in
a white-box model if any pre-image(s) not used in the signature itself is gener-
ated during signature generation or it is already stored after key generation is
completed. While this might be just an implementation choice in some of the

5 We also note that to improve computational efficiency of signature generation aux-
iliary information could also be pre-computed.
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schemes (e.g., the above Merkle’s scheme) (without any white-box security con-
cern, one might still prefer different variations of the basic scheme for leveraging
different storage-computation tradeoffs), in some others secure implementations
are not possible at all (e.g., Winternitz scheme and other hash-chain based ap-
proaches [10]). Leaving the analysis of every scheme in the rich literature of
hash-based signatures in this context as a future work, we provide a white-box
alternative to a generic crypto primitive (i.e., Lamport’s hash chain) in the next
section.

5 A White-Box Alternative to Hash Chains and T/Key

A hash chain (proposed also by Lamport [6]) is a useful cryptographic primitive
where a single shared (public) value is sufficient to verify securely the authenticity
of a finite (but potentially large) number of different values. Besides a number
of other applications, elements of hash chains could simply be used as one-time
passwords (OTPs) for user authentication.

For a better grasp of the advantage of using a hash chain, let us first consider
the case where a number of independent one-time passwords are generated on
the user (client) side and the hash value of each is sent to the server as part
of the initialization. Each OTP is sent one by one during normal operation to
be verified by the server using hash values. The disadvantage here ıs that the
storage requirement both on the server and client side increases linearly with the
number of OTPs. (Besides, the risk is evident on the client side, any (white-box)
attacker having access to the untrusted client machine could easily intercept all
the OTPs to be used for later impersonation.)

Could we eliminate some of these problems with hash chains? A hash chain
of length m is simply obtained by iteratively applying a one-way (hash) function
to a randomly generated seed value for m times:

fm(s) = (f ◦ f ◦ · · · ◦ f)︸ ︷︷ ︸
m times

(s)

The final value fm(s) is sent to the server for initialization(registration).
The first OTP used for authentication is the element just before the final value:
fm−1(s). In this reverse order, in total m − 1 OTPs could be generated and
used while requiring only a single value on the server side for verification. On
the client side, there are two options for the storage:

– The client could choose to generate and store all the elements in the hash
chain. Later, once one of them is to be used, there will not be any need to
do computation.

– The client chooses to store only the seed value and generates the required
OTP by iteratively doing the required number of hash computations 6.

6 An amortization technique could also be used to reduce memory-times-computation
complexity [11].
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It is evident that the first option is not secure against a white-box attacker.
It is also easy to see that the second option is similarly insecure simply because
on the untrusted machine either the seed value itself (while one of the elements
of the hash chain is generated) or other elements prior to a particular element
could be intercepted by the white-box attacker for later use. We require a solution
where OTPs could be generated independently so that white-box attacker could
not gain any advantage even when he could fully observe the internal state of
the client-side software. Below, we illustrate a solution for achieving this. In fact,
the white-box implementation of Merkle’s tree discussed in the previous section
could be tailored to serve for our purposes i.e., each leaf node corresponds to the
hash of a single random number rather than 2N random numbers.

Below, we only show the initialization phase (generation and verification of
OTPs are skipped for the sake of brevity).

Initialization Phase:
Input: Parameters L, IP, T

L: the length of random numbers (as well as block length of EK)
IP : (randomly generated and stored) initial plaintext for WBT -EK

T : number of OTPs (T = 2n) (n is the height of the tree)
Output:

a. for 0 ≤ t ≤ T − 1
rt = WBT -EK(IP + t) /*generate L-bit pseudo-random numbers*/
pt = f(rt) /* compute hash of the random numbers */

The values of pt also correspond to the leaf nodes of the tree (no need to
compute the hash of pt values) i.e., pt = a(0, t)

b. Generate the root node and distribute it securely.
To summarize, a Merkle’s tree in which the leaf nodes are the hash values of

a single random number could be a viable alternative to hash chains if white-box
attackers are also of concern. Table 1 compares our proposed scheme with hash
chain based OTPs and independent OTPs.

6 White-Box Resistant Time-based OTPs

The idea of using a hash chain for one-time passwords was developed and imple-
mented under the name of S/KEY [7]. As noted in [8], S/KEY has a number of
undesirable properties. In particular, the scheme is vulnerable to an attack where
the client reveals OTP(s) to attackers for future abuses by various means such
as social engineering or by impersonating the server. The need and difficulty for
synchronization of the chain between server and client is another concern (which
element is the next one?).

A widely used solution for OTPs is implemented in the TOTP standard [9].
Here, the server and the client shares a secret key. Using the current timestamp
(usually in a granularity of 30 seconds) as an implicit challenge of the server, this
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Table 1. Comparison of schemes (for use of T OTPs).

Proposed Scheme w/ Hash Chains
Independent

OTPs

White-box resistant
√

No No

Client-side
computation per OTP

O(1) WBT -EK

+O(log T ) hash
None

(if elements are stored) None

Storage on client O(T )

O(T )

(if elements are stored) O(T )

Storage on server O(1) O(1) O(T )

Communication cost
per authentication O(log T ) O(1) O(1)

Initialization cost

O(T ) WBT -EK

+O(T ) hash O(T ) hash O(T ) hash

standard actually implements a simple challenge-response protocol. The client
computes the MAC of the challenge and transmits the output (actually part of
it) as the OTP response. The same computation could be done on the server
side if a loose time synchronization is present. On the down side, TOTP depends
on a secret stored both on the client and server, hence it is open to attacks on
both sides.

To solve this problem for the server side, Kogan et al. proposed T/Key, a
time-based OTP scheme [8]. The key idea in T/Key is to map each element of
a hash chain to a specific time period so that OTPs are now time dependent 7.
However although no secret is stored on the server side, T/Key is vulnerable to
a white-box attacker having access to the client side implementation. Below, we
will show that the scheme we proposed in previous section could easily be made
time-dependent just like TOTP and T/Key.

In fact, making our proposed scheme time-dependent requires no more than
a mapping of each OTP (leaf node of the tree) to a pre-determined specific time
period. For instance we could prefer a mapping from left to right. Suppose we
choose such a mapping in the example of Merkle tree with 8 leaf nodes shown
in Fig. 1. Suppose also the tree is already built and the root node is shared with
the server. Then, the time-dependent OTP is generated as follows:

Time-dependent OTP Generation:
Input: Parameters I, tinit, t

I: time slot length

7 Additionally, in order to make the chain birthday-attack resistant, to generate each
of its element, independent hash functions from a single hash function is obtained
using the idea of domain separation.
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tinit: setup time t (measured in slots of length I) (it has to be shared with
the server side during registration)

t: current time (measured in slots of length I)
Output:

rt = WBT -EK(IP + t− tinit) /* generate time-based OTP */

(In addition, nodes (hash values) up to the root node should be computed
and sent as auxiliary information to make it possible to compute and
verify the root public key) (for instance a(0, 1), a(1, 1) and a(2, 1)
should be sent for t = tinit in the example shown in Figure 1).

On the down side, as compared to T/Key, one major efficiency drawback of
the proposed scheme is that for a binary tree with 1×106 leaf nodes (valid approx-
imately for one year), initialization (set up) requires 1×106 white-box encryption
operations besides the hash operations. This drawback might be addressed by
using a lightweight white-box encryption primitive (as further discussed in the
Implementation section).

On the other hand, we argue that additional communication cost for OTP
transmissions in our proposed scheme is less of a concern especially in a use
case where OTPs are sent to the online server without manual entry (with only
with a simple confirmation tap in a mobile authenticator application). Note that
the use of a traditional digital signature scheme in this use case might not be
preferable due to a white-box attacker threat.

If manual entry of OTPs is performed using QR-codes (the phone displays
a QR code containing OTP and the user scans it using his laptop camera)
as proposed by T/Key inventors [8], our proposed scheme still seems a viable
approach. It requires an OTP length of less than 1 KB for 128-bit security and
32 years of authentication period, which does not exceed the maximum capacity
of QR codes [12] (see Table 6).

7 Security Analysis and Space-Hardness of the Schemes

Specifically, a white-box attacker’s goal against the implementation of Lamport’s
scheme described above is to obtain the private key (or part of it) to generate a
signature for a message not intended to be signed by the legitimate user. This
corresponds to any rk values not revealed as part of the signature. The attacker
has two options for achieving this:

– He could try to invert at least one of the hash images (the hash values in
the public key).

– He could try to generate at least one of the unrevealed pseudo-random num-
bers using the stored IP value.

The first option is not possible due to the one-way property of the hash
function used. Similarly, the second option is out of reach if a secure white-
box block cipher is available which prevents to extract the key K from the
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lookup table. (the concern of code lifting will be addressed by the space-hardness
analysis of the proposed schemes.)

What if the attacker accesses the implementation environment before or while
the key-dependent look-up table is built? Since the encryption key K is available
in memory at that time, access to this key brings the ability to generate the whole
one-time private key itself. We remind that this is also a legitimate concern
for the symmetric encryption case but with a subtle difference. For encryption,
the cryptographic key (therefore the key-dependent lookup table) is prepared
to encrypt potentially infinite amount of plaintext messages. Hence the time
window of vulnerability against a white-box attacker is short and acceptable
(other precautions such as building the tables while the untrusted device is
offline could be considered). On the other hand, if the lookup table is only used
for signing a single message and building a second table is required thereafter, the
risk against white-box attacker is significantly increased. In previous sections,
we have already shown that a single look-up table could be used to sign multiple
(potentially infinite) messages but there are some caveats that implementations
should take into account.

For symmetric ciphers, a weak white-box model is defined in [2]:

Definition 1. A cipher is said to be (M,Z)-space hard if it infeasible for an
adversary to encrypt (decrypt) a randomly chosen plaintext with probability more
that 2−Z given code (table) size less than M .

Similarly, we define the space-hardness for signatures as follows:

Definition 2. A signature scheme is said to be (M,Z)-space hard if it infeasible
for an adversary to forge a (signed) message with probability more that 2−Z given
code (table) size less than M .

According to the White-Box Attack Context (WBAC) definition by Chow et
al. [1], it is assumed that ”internal details of cryptographic algorithms are both
completely visible and alterable at will”. This model is not applicable for the
signature schemes as the attacker can change the message to be signed. That
means each signature scheme is forgeable according to WBAC. As a result, we
think Definition 2 makes more sense for signature schemes. Here, adversary has
read-only access to software where the size of data accessed is bounded by M .

We also note that the signature schemes we proposed in our work are not
stateless. Although the stateful hash based signatures can easily be broken when
the attacker has ability to change the state, it is not possible in our security model
as the adversary has read-only access.

Theorem 1. Let S be the signing scheme described above with T = 2n number
of messages to be signed, N is the message length and one-way hash function f
with an output length of N . If the S uses (M,Z)-space hard cipher WBT -EK ,
then the scheme (M,W )-space hard where

W = Z − log2(N)− n− 1

provided that N is not too small.
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In the signature scheme, to forge a message, an adversary needs to find at
least one of the preimages f(rs,i,t) where 1 ≤ s ≤ N , 1 ≤ i ≤ 2 and 0 ≤ t ≤
T − 1. So there is 2N · 2n preimages which are encrypted by WBT -Ek. By the
assumption each value can be obtained by the adversary with probability less
than 2−Z . Then the probability that at least one of them can be obtained by
the adversary is

2N · 2n · 2−Z = 2−W .

Here, an adversary can also try to find the an inverse of the hash function f by
directly taking random hashes or using some weakness in hash function. Because
of this, we assume the scheme uses a secure hash function with enough output
length. For example, if SHA256 is used, then the adversary needs to take about
2256

2N ·2n to find at least one of preimages f(rs,i,t). For the white-box ciphers such
as SPACE or SPNbox, the space hardness level is generally taken as Z = 64 or
Z = 128. So, the security bottleneck of this scheme is explosion of the white box
cipher.

For our white-box resistant OTP scheme, a similar calculation can be done.

Theorem 2. A white-box resistant OTP scheme using T = 2n number of pass-
words is (M,Z−n)-space hard if an (M,Z)-space hard cipher WBT -Ek is used,
provided that the scheme is using secure hash function with enough output length.

We know that SPNbox is (M,−10 ·t · log2(M/I))-space hard for any given M
where I is the size of the input-output table of the inner cipher and t = 16, 8, 5, 4
for SPNbox-8, -16, -24, -32 respectively [13]. Using the theorems above we can
calculate space-hardness of the signature and OTP schemes. We assume the
signature scheme with T = 220 number of messages to be signed and OTP with
T = 220 number of passwords. For Z = 64 and Z = 128, (M,Z)-space hardness
of the schemes with SPNbox instantiations calculated in Table 2.

Table 2. (M,Z)-space hardness of the proposed schemes with SPNbox instantiations.

WBT -EK
Table Size

U

Signature Space-hardness OTP Space-hardness

Z = 64 Z = 128 Z = 64 Z = 128

SPNbox-8 256 B U/20.58 U/20.98 U/20.53 U/20.93

SPNbox-16 132 KB U/21.16 U/21.96 U/21.05 U/21.85

SPNbox-24 50.3 MB U/21.86 U/23.14 U/21.68 U/22.96

SPNbox-32 17.2 GB U/22.33 U/23.93 U/22.10 U/23.70

8 Implementation

We implement our proposed scheme using the SPNbox algorithm [13]. SPNbox
algorithm is considered secure when evaluated in terms of various adversary
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models such as cache timing, key extraction and space-hardness. We have imple-
mented the SPNbox algorithm for different configurations, the results are shown
in Table 3 and Table 4 below (The results of SPNbox-32 are omitted due to high
memory requirements).

While implementing the SPNbox algorithm, we aimed to increase the perfor-
mance by creating ready-made tables for matrix multiplications in the nonlinear
and linear layers. We have 4,5,8 and 16 independent table lookups in SPNbox-32,
24, 16 and 8, respectively. As a result, we achieved 15% performance improve-
ment compared to other available implementations [14] (parallel instruction sets
were not used).

Table 3. Software performance of the SPNbox cipher family on the Intel platform in
a white-box setting. Numbers are given in cycles per byte (cpb).

Algorithm
Rounds
(outer)

Table Size
Performance

[cpb]

SPNbox-24 10 50.3 MB 3323
SPNbox-16 10 132 KB 833
SPNbox-8 10 256 B 1030

Table 4. Software performance of the SPNbox cipher family in a black-box setting on
Intel. Numbers are given in cycles per byte (cpb).

Algorithm
Rounds
(outer)

Rounds
(inner)

Performance
[cpb]

SPNbox-24 10 20 6545
SPNbox-16 10 32 6069
SPNbox-8 10 64 9873

While implementing the signature scheme, instead of producing 2N pre-
images and hash-images for N-bit hash length, we preferred an optimized message
mapping algorithm [15], thereby we achieved almost 50% percent of improvement
in time and memory. Considering the time and memory usage performance, we
decided to use the SPNbox-16 configuration in our signature and OTP imple-
mentations. Performance results of our signature and OTP implementations are
given in Table 5 and Table 6, respectively.

As a future work, we intend to further improve our performance results using
AVX (Intel) and NEON (ARMv8) instructions.

9 Related Work

Joye pointed out that one of the potential applications of white-box cryptography
is to transform a MAC into a digital signature [16]. Here, “MAC verification”
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Table 5. Performance results of the one-time signature scheme for different number of
leaf nodes. Results obtained with the Apple M1(ARM) processor.(L-bit = 128, N-bit
= 128, EK = SPNbox-16)

Number of
Leaf Node

Root Hash
Generation

Signing Verifying
Signature
Size (B)

210 0.129 sec 191 µs 153 µs 2272
215 4.14 sec 258 µs 155 µs 2352
220 129.05 sec 262 µs 155 µs 2432

Table 6. Performance results of the one-time password scheme for different number of
leaf nodes. Results obtained with the Apple M1(ARM) processor. (L-bit = 128, N-bit
= 256, EK = SPNbox-16)

Number of
Leaf Node

Root Hash
Generation

Generation Verification Size of OTP

215 0.041 sec 4 µs 6 µs 496 byte
220 1.308 sec 12 µs 9 µs 656 byte
225 44.11 sec 91 µs 11 µs 816 byte

algorithm is assumed to have a ”certified” white-box implementation. Since the
cryptographic key could not be extracted and cannot be used for generation
of a MAC, the implementation is only useful for verification of (supposedly) a
digital signature. However, this implementation choice is restricted in the sense
that only those who have obtained a certified white-box implementation could
perform the signature verification.

Zhang et. al. presented a white-box implementation of the identity-based
signature scheme in the IEEE P1363 standard [17]. Feng et. al. proposed white-
box implementation for the classical Shamir’s identity based signature scheme
[18]. In a recent work, Dottax et. al provided a deeper comprehension on the
challenges of white-box ECDSA implementations [19]. Ma introduced a white-
box Schnorr signature scheme [20] but provided only a limited security analysis.

Up to our best knowledge, our paper is the first study presenting a general-
purpose quantum-safe digital signature algorithm in a white-box security model
8.

10 Concluding Remarks

To motivate our research, we consider a mobile authenticator application sup-
porting multifactor user authentication. In this scenario, digital signatures and

8 After the first version of our paper appeared in IACR ePrint in 2021, a white-box
signature scheme based on multivariate polynomials was published [21]. We note
that this new scheme requires 256 GB memory and 62 MB public keys for 80-bit
security. We believe our scheme is more practical since it requires 16 B for public key
and the memory requirement is only for a white-box implementation of a symmetric
cipher.
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hash chains are preferable constructions since no secret information is required to
be stored on the verification (server) side. On the other hand, a typical mobile
authenticator application is installed on an untrusted client device vulnerable
to attacks and therefore should also be considered in a more sophisticated yet
realistic threat model. To protect software implementations in such an environ-
ment, in this paper, we presented white-box resistant solutions for hash-based
signatures and one-time passwords. We implemented these schemes and showed
that these schemes are feasible in practice. The proposed simple and elegant
schemes address critical challenges and provides an important step in white-box
cryptography.
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